forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathv0.15.0.txt
661 lines (387 loc) · 25 KB
/
v0.15.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
.. _whatsnew_0150:
v0.15.0 (???)
-------------
This is a major release from 0.14.1 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
.. warning::
pandas >= 0.15.0 will no longer support compatibility with NumPy versions <
1.7.0. If you want to use the latest versions of pandas, please upgrade to
NumPy >= 1.7.0.
- Highlights include:
- The ``Categorical`` type was integrated as a first-class pandas type, see :ref:`here <whatsnew_0150.cat>`
- Internal refactoring of the ``Index`` class to no longer sub-class ``ndarray``, see :ref:`Internal Refactoring <whatsnew_0150.refactoring>`
- New datetimelike properties accessor ``.dt`` for Series, see :ref:`Datetimelike Properties <whatsnew_0150.dt>`
- dropping support for ``PyTables`` less than version 3.0.0, and ``numexpr`` less than version 2.1 (:issue:`7990`)
- :ref:`Other Enhancements <whatsnew_0150.enhancements>`
- :ref:`API Changes <whatsnew_0150.api>`
- :ref:`Performance Improvements <whatsnew_0150.performance>`
- :ref:`Prior Deprecations <whatsnew_0150.prior_deprecations>`
- :ref:`Deprecations <whatsnew_0150.deprecations>`
- :ref:`Known Issues <whatsnew_0150.knownissues>`
- :ref:`Bug Fixes <whatsnew_0150.bug_fixes>`
.. warning::
In 0.15.0 ``Index`` has internally been refactored to no longer sub-class ``ndarray``
but instead subclass ``PandasObject``, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (See the :ref:`Internal Refactoring <whatsnew_0150.refactoring>`)
.. _whatsnew_0150.api:
API changes
~~~~~~~~~~~
- Passing multiple levels to `DataFrame.stack()` will now work when multiple level
numbers are passed (:issue:`7660`), and will raise a ``ValueError`` when the
levels aren't all level names or all level numbers. See
:ref:`Reshaping by stacking and unstacking <reshaping.stack_multiple>`.
- :func:`set_names`, :func:`set_labels`, and :func:`set_levels` methods now take an optional ``level`` keyword argument to all modification of specific level(s) of a MultiIndex. Additionally :func:`set_names` now accepts a scalar string value when operating on an ``Index`` or on a specific level of a ``MultiIndex`` (:issue:`7792`)
.. ipython:: python
idx = pandas.MultiIndex.from_product([['a'], range(3), list("pqr")], names=['foo', 'bar', 'baz'])
idx.set_names('qux', level=0)
idx.set_names(['qux','baz'], level=[0,1])
idx.set_levels(['a','b','c'], level='bar')
idx.set_levels([['a','b','c'],[1,2,3]], level=[1,2])
- Raise a ``ValueError`` in ``df.to_hdf`` with 'fixed' format, if ``df`` has non-unique columns as the resulting file will be broken (:issue:`7761`)
- :func:`rolling_min`, :func:`rolling_max`, :func:`rolling_cov`, and :func:`rolling_corr`
now return objects with all ``NaN`` when ``len(arg) < min_periods <= window`` rather
than raising. (This makes all rolling functions consistent in this behavior), (:issue:`7766`)
Prior to 0.15.0
.. ipython:: python
s = Series([10, 11, 12, 13])
.. code-block:: python
In [15]: rolling_min(s, window=10, min_periods=5)
ValueError: min_periods (5) must be <= window (4)
New behavior
.. ipython:: python
rolling_min(s, window=10, min_periods=5)
- :func:`ewma`, :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcorr`, and :func:`ewmcov`
now have an optional ``ignore_na`` argument.
When ``ignore_na=False`` (the default), missing values are taken into account in the weights calculation.
When ``ignore_na=True`` (which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation.
(:issue:`7543`)
.. ipython:: python
ewma(Series([None, 1., 100.]), com=2.5)
ewma(Series([1., None, 100.]), com=2.5, ignore_na=True) # pre-0.15.0 behavior
ewma(Series([1., None, 100.]), com=2.5, ignore_na=False) # default
- :func:`ewma`, :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcorr`, and :func:`ewmcov`
now set to ``NaN`` the first ``min_periods-1`` entries of the result (for ``min_periods>1``).
Previously the first ``min_periods`` entries of the result were set to ``NaN``.
The new behavior accords with the existing documentation. (:issue:`7884`)
- :func:`rolling_max`, :func:`rolling_min`, :func:`rolling_sum`, :func:`rolling_mean`, :func:`rolling_median`,
:func:`rolling_std`, :func:`rolling_var`, :func:`rolling_skew`, :func:`rolling_kurt`, and :func:`rolling_quantile`,
:func:`rolling_cov`, :func:`rolling_corr`, :func:`rolling_corr_pairwise`,
:func:`rolling_window`, and :func:`rolling_apply` with ``center=True`` previously would return a result of the same
structure as the input ``arg`` with ``NaN`` in the final ``(window-1)/2`` entries.
Now the final ``(window-1)/2`` entries of the result are calculated as if the input ``arg`` were followed
by ``(window-1)/2`` ``NaN`` values. (:issue:`7925`)
Prior behavior (note final value is ``NaN``):
.. code-block:: python
In [7]: rolling_sum(Series(range(5)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 9
4 NaN
dtype: float64
New behavior (note final value is ``7 = sum([3, 4, NaN])``):
.. ipython:: python
rolling_sum(Series(range(5)), window=3, min_periods=0, center=True)
- Removed ``center`` argument from :func:`expanding_max`, :func:`expanding_min`, :func:`expanding_sum`,
:func:`expanding_mean`, :func:`expanding_median`, :func:`expanding_std`, :func:`expanding_var`,
:func:`expanding_skew`, :func:`expanding_kurt`, :func:`expanding_quantile`, :func:`expanding_count`,
:func:`expanding_cov`, :func:`expanding_corr`, :func:`expanding_corr_pairwise`, and :func:`expanding_apply`,
as the results produced when ``center=True`` did not make much sense. (:issue:`7925`)
- Bug in passing a ``DatetimeIndex`` with a timezone that was not being retained in DataFrame construction from a dict (:issue:`7822`)
In prior versions this would drop the timezone.
.. ipython:: python
i = date_range('1/1/2011', periods=3, freq='10s', tz = 'US/Eastern')
i
df = DataFrame( {'a' : i } )
df
df.dtypes
This behavior is unchanged.
.. ipython:: python
df = DataFrame( )
df['a'] = i
df
df.dtypes
- ``SettingWithCopy`` raise/warnings (according to the option ``mode.chained_assignment``) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (:issue:`7845`, :issue:`7950`)
.. code-block:: python
In [1]: df = DataFrame(np.arange(0,9), columns=['count'])
In [2]: df['group'] = 'b'
In [3]: df.iloc[0:5]['group'] = 'a'
/usr/local/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
- The ``infer_types`` argument to :func:`~pandas.io.html.read_html` now has no
effect (:issue:`7762`, :issue:`7032`).
- ``DataFrame.to_stata`` and ``StataWriter`` check string length for
compatibility with limitations imposed in dta files where fixed-width
strings must contain 244 or fewer characters. Attempting to write Stata
dta files with strings longer than 244 characters raises a ``ValueError``. (:issue:`7858`)
- ``read_stata`` and ``StataReader`` can import missing data information into a
``DataFrame`` by setting the argument ``convert_missing`` to ``True``. When
using this options, missing values are returned as ``StataMissingValue``
objects and columns containing missing values have ``object`` data type. (:issue:`8045`)
- ``Index.isin`` now supports a ``level`` argument to specify which index level
to use for membership tests (:issue:`7892`, :issue:`7890`)
.. code-block:: python
In [1]: idx = pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])
In [2]: idx.values
Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')], dtype=object)
In [3]: idx.isin(['a', 'c', 'e'], level=1)
Out[3]: array([ True, False, True, True, False, True], dtype=bool)
- ``tz_localize(None)`` for tz-aware ``Timestamp`` and ``DatetimeIndex`` now removes timezone holding local time,
previously results in ``Exception`` or ``TypeError`` (:issue:`7812`)
.. ipython:: python
ts = Timestamp('2014-08-01 09:00', tz='US/Eastern')
ts
ts.tz_localize(None)
didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
didx
didx.tz_localize(None)
- ``DataFrame.tz_localize`` and ``DataFrame.tz_convert`` now accepts an optional ``level`` argument
for localizing a specific level of a MultiIndex (:issue:`7846`)
- ``Timestamp.tz_localize`` and ``Timestamp.tz_convert`` now raise ``TypeError`` in error cases, rather than ``Exception`` (:issue:`8025`)
- ``Timestamp.__repr__`` displays ``dateutil.tz.tzoffset`` info (:issue:`7907`)
- ``merge``, ``DataFrame.merge``, and ``ordered_merge`` now return the same type
as the ``left`` argument. (:issue:`7737`)
- Histogram from ``DataFrame.plot`` with ``kind='hist'`` (:issue:`7809`), See :ref:`the docs<visualization.hist>`.
- Boxplot from ``DataFrame.plot`` with ``kind='box'`` (:issue:`7998`), See :ref:`the docs<visualization.box>`.
- Consistency when indexing with ``.loc`` and a list-like indexer when no values are found.
.. ipython:: python
df = DataFrame([['a'],['b']],index=[1,2])
df
In prior versions there was a difference in these two constructs:
- ``df.loc[[3]]`` would (prior to 0.15.0) return a frame reindexed by 3 (with all ``np.nan`` values)
- ``df.loc[[3],:]`` would raise ``KeyError``.
Both will now raise a ``KeyError``. The rule is that *at least 1* indexer must be found when using a list-like and ``.loc`` (:issue:`7999`)
There was also a difference between ``df.loc[[1,3]]`` (returns a frame reindexed by ``[1, 3]``) and ``df.loc[[1, 3],:]`` (would raise ``KeyError`` prior to 0.15.0). Both will now return a reindexed frame.
.. ipython:: python
df.loc[[1,3]]
df.loc[[1,3],:]
This can also be seen in multi-axis indexing with a ``Panel``.
.. ipython:: python
p = Panel(np.arange(2*3*4).reshape(2,3,4),
items=['ItemA','ItemB'],major_axis=[1,2,3],minor_axis=['A','B','C','D'])
p
The following would raise ``KeyError`` prior to 0.15.0:
.. ipython:: python
p.loc[['ItemA','ItemD'],:,'D']
Furthermore, ``.loc`` will raise If no values are found in a multi-index with a list-like indexer:
.. ipython:: python
:okexcept:
s = Series(np.arange(3,dtype='int64'),index=MultiIndex.from_product([['A'],['foo','bar','baz']],
names=['one','two'])).sortlevel()
s
s.loc[['D']]
- ``Index`` now supports ``duplicated`` and ``drop_duplicates``. (:issue:`4060`)
.. ipython:: python
idx = Index([1, 2, 3, 4, 1, 2])
idx
idx.duplicated()
idx.drop_duplicates()
- Assigning values to ``None`` now considers the dtype when choosing an 'empty' value (:issue:`7941`).
Previously, assigning to ``None`` in numeric containers changed the
dtype to object (or errored, depending on the call). It now uses
NaN:
.. ipython:: python
s = Series([1, 2, 3])
s.loc[0] = None
s
``NaT`` is now used similarly for datetime containers.
For object containers, we now preserve None values (previously these
were converted to NaN values).
.. ipython:: python
s = Series(["a", "b", "c"])
s.loc[0] = None
s
To insert a NaN, you must explicitly use ``np.nan``. See the :ref:`docs <missing.inserting>`.
.. _whatsnew_0150.dt:
.dt accessor
~~~~~~~~~~~~
``Series`` has gained an accessor to succinctly return datetime like properties for the *values* of the Series, if its a datetime/period like Series. (:issue:`7207`)
This will return a Series, indexed like the existing Series. See the :ref:`docs <basics.dt_accessors>`
.. ipython:: python
# datetime
s = Series(date_range('20130101 09:10:12',periods=4))
s
s.dt.hour
s.dt.second
s.dt.day
This enables nice expressions like this:
.. ipython:: python
s[s.dt.day==2]
.. ipython:: python
# period
s = Series(period_range('20130101',periods=4,freq='D').asobject)
s
s.dt.year
s.dt.day
.. _whatsnew_0150.refactoring:
Internal Refactoring
~~~~~~~~~~~~~~~~~~~~
In 0.15.0 ``Index`` has internally been refactored to no longer sub-class ``ndarray``
but instead subclass ``PandasObject``, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (:issue:`5080`, :issue:`7439`, :issue:`7796`, :issue:`8024`)
- you may need to unpickle pandas version < 0.15.0 pickles using ``pd.read_pickle`` rather than ``pickle.load``. See :ref:`pickle docs <io.pickle>`
- when plotting with a ``PeriodIndex``. The ``matplotlib`` internal axes will now be arrays of ``Period`` rather than a ``PeriodIndex``. (this is similar to how a ``DatetimeIndex`` passes arrays of ``datetimes`` now)
- MultiIndexes will now raise similary to other pandas objects w.r.t. truth testing, See :ref:`here <gotchas.truth>` (:issue:`7897`).
.. _whatsnew_0150.cat:
Categoricals in Series/DataFrame
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:class:`~pandas.Categorical` can now be included in `Series` and `DataFrames` and gained new
methods to manipulate. Thanks to Jan Schultz for much of this API/implementation. (:issue:`3943`, :issue:`5313`, :issue:`5314`,
:issue:`7444`, :issue:`7839`, :issue:`7848`, :issue:`7864`, :issue:`7914`, :issue:`7768`, :issue:`8006`, :issue:`3678`, :issue:`8075`, :issue:`8076`).
For full docs, see the :ref:`Categorical introduction <categorical>` and the
:ref:`API documentation <api.categorical>`.
.. ipython:: python
df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
# convert the raw grades to a categorical
df["grade"] = pd.Categorical(df["raw_grade"])
# Alternative: df["grade"] = df["raw_grade"].astype("category")
df["grade"]
# Rename the levels
df["grade"].cat.levels = ["very good", "good", "very bad"]
# Reorder the levels and simultaneously add the missing levels
df["grade"].cat.reorder_levels(["very bad", "bad", "medium", "good", "very good"])
df["grade"]
df.sort("grade")
df.groupby("grade").size()
- ``pandas.core.group_agg`` and ``pandas.core.factor_agg`` were removed. As an alternative, construct
a dataframe and use ``df.groupby(<group>).agg(<func>)``.
- Supplying "codes/labels and levels" to the :class:`~pandas.Categorical` constructor is deprecated and does
not work without supplying ``compat=True``. The default mode now uses "values and levels".
Please change your code to use the :meth:`~pandas.Categorical.from_codes` constructor.
- The ``Categorical.labels`` attribute was renamed to ``Categorical.codes`` and is read
only. If you want to manipulate codes, please use one of the
:ref:`API methods on Categoricals <api.categorical>`.
- Bug in checking of table name in ``read_sql`` in certain cases (:issue:`7826`).
.. _whatsnew_0150.prior_deprecations:
Prior Version Deprecations/Changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are no prior version deprecations that are taking effect as of 0.15.0.
.. _whatsnew_0150.deprecations:
Deprecations
~~~~~~~~~~~~
The ``convert_dummies`` method has been deprecated in favor of
``get_dummies``(:issue:`8140`)
.. _whatsnew_0150.knownissues:
Known Issues
~~~~~~~~~~~~
.. _whatsnew_0150.enhancements:
Enhancements
~~~~~~~~~~~~
- Added support for a ``chunksize`` parameter to ``to_sql`` function. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (:issue:`8062`)
- Added support for writing ``datetime.date`` and ``datetime.time`` object columns with ``to_sql`` (:issue:`6932`).
- Added support for bool, uint8, uint16 and uint32 datatypes in ``to_stata`` (:issue:`7097`, :issue:`7365`)
- Added ``layout`` keyword to ``DataFrame.plot`` (:issue:`6667`)
- Allow to pass multiple axes to ``DataFrame.plot``, ``hist`` and ``boxplot`` (:issue:`5353`, :issue:`6970`, :issue:`7069`)
- ``PeriodIndex`` supports ``resolution`` as the same as ``DatetimeIndex`` (:issue:`7708`)
- ``pandas.tseries.holiday`` has added support for additional holidays and ways to observe holidays (:issue:`7070`)
- ``pandas.tseries.holiday.Holiday`` now supports a list of offsets in Python3 (:issue:`7070`)
- ``pandas.tseries.holiday.Holiday`` now supports a days_of_week parameter (:issue:`7070`)
- ``Period`` and ``PeriodIndex`` supports addition/subtraction with ``timedelta``-likes (:issue:`7966`)
If ``Period`` freq is ``D``, ``H``, ``T``, ``S``, ``L``, ``U``, ``N``, ``timedelta``-like can be added if the result can have same freq. Otherwise, only the same ``offsets`` can be added.
.. ipython:: python
idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')
idx
idx + pd.offsets.Hour(2)
idx + timedelta(minutes=120)
idx + np.timedelta64(7200, 's')
idx = pd.period_range('2014-07', periods=5, freq='M')
idx
idx + pd.offsets.MonthEnd(3)
- The ``get_dummies`` method can now be used on DataFrames. By default only
catagorical columns are encoded as 0's and 1's, while other columns are
left untouched.
.. ipython:: python
df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
'C': [1, 2, 3]})
pd.get_dummies(df)
.. _whatsnew_0150.performance:
Performance
~~~~~~~~~~~
- Performance improvements in ``DatetimeIndex.__iter__`` to allow faster iteration (:issue:`7683`)
- Performance improvements in ``Period`` creation (and ``PeriodIndex`` setitem) (:issue:`5155`)
- Improvements in Series.transform for significant performance gains (revised) (:issue:`6496`)
- Performance improvements in ``StataReader`` when reading large files (:issue:`8040`, :issue:`8073`)
- Performance improvements in ``StataWriter`` when writing large files (:issue:`8079`)
- Performance and memory usage improvements in multi-key ``groupby`` (:issue:`8128`)
.. _whatsnew_0150.experimental:
Experimental
~~~~~~~~~~~~
There are no experimental changes in 0.15.0
.. _whatsnew_0150.bug_fixes:
Bug Fixes
~~~~~~~~~
- Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (:issue:`8021`)
- Bug in Series 0-division with a float and integer operand dtypes (:issue:`7785`)
- Bug in ``Series.astype("unicode")`` not calling ``unicode`` on the values correctly (:issue:`7758`)
- Bug in ``DataFrame.as_matrix()`` with mixed ``datetime64[ns]`` and ``timedelta64[ns]`` dtypes (:issue:`7778`)
- Bug in ``HDFStore.select_column()`` not preserving UTC timezone info when selecting a DatetimeIndex (:issue:`7777`)
- Bug in ``to_datetime`` when ``format='%Y%m%d'`` and ``coerce=True`` are specified, where previously an object array was returned (rather than
a coerced time-series with ``NaT``), (:issue:`7930`)
- Bug in ``DatetimeIndex`` and ``PeriodIndex`` in-place addition and subtraction cause different result from normal one (:issue:`6527`)
- Bug in adding and subtracting ``PeriodIndex`` with ``PeriodIndex`` raise ``TypeError`` (:issue:`7741`)
- Bug in ``combine_first`` with ``PeriodIndex`` data raises ``TypeError`` (:issue:`3367`)
- Bug in multi-index slicing with missing indexers (:issue:`7866`)
- Bug in multi-index slicing with various edge cases (:issue:`8132`)
- Regression in multi-index indexing with a non-scalar type object (:issue:`7914`)
- Bug in Timestamp comparisons with ``==`` and dtype of int64 (:issue:`8058`)
- Bug in pickles contains ``DateOffset`` may raise ``AttributeError`` when ``normalize`` attribute is reffered internally (:issue:`7748`)
- Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity
when matching block and manager items, when there's only one block there's no ambiguity (:issue:`7794`)
- Bug in HDFStore iteration when passing a where (:issue:`8014`)
- Bug in DataFrameGroupby.transform when transforming with a passed non-sorted key (:issue:`8046`)
- Bug in repeated timeseries line and area plot may result in ``ValueError`` or incorrect kind (:issue:`7733`)
- Bug in ``offsets.apply``, ``rollforward`` and ``rollback`` may reset nanosecond (:issue:`7697`)
- Bug in ``offsets.apply``, ``rollforward`` and ``rollback`` may raise ``AttributeError`` if ``Timestamp`` has ``dateutil`` tzinfo (:issue:`7697`)
- Bug in ``is_superperiod`` and ``is_subperiod`` cannot handle higher frequencies than ``S`` (:issue:`7760`, :issue:`7772`, :issue:`7803`)
- Bug in ``PeriodIndex.unique`` returns int64 ``np.ndarray`` (:issue:`7540`)
- Bug in ``DataFrame.reset_index`` which has ``MultiIndex`` contains ``PeriodIndex`` or ``DatetimeIndex`` with tz raises ``ValueError`` (:issue:`7746`, :issue:`7793`)
- Bug in ``DataFrame.plot`` with ``subplots=True`` may draw unnecessary minor xticks and yticks (:issue:`7801`)
- Bug in ``StataReader`` which did not read variable labels in 117 files due to difference between Stata documentation and implementation (:issue:`7816`)
- Bug in ``StataReader`` where strings were always converted to 244 characters-fixed width irrespective of underlying string size (:issue:`7858`)
- Bug in ``expanding_cov``, ``expanding_corr``, ``rolling_cov``, ``rolling_cov``, ``ewmcov``, and ``ewmcorr``
returning results with columns sorted by name and producing an error for non-unique columns;
now handles non-unique columns and returns columns in original order
(except for the case of two DataFrames with ``pairwise=False``, where behavior is unchanged) (:issue:`7542`)
- Bug in :func:`rolling_count` and ``expanding_*`` functions unnecessarily producing error message for zero-length data (:issue:`8056`)
- Bug in :func:`rolling_apply` and :func:`expanding_apply`` interpreting ``min_periods=0`` as ``min_periods=1 (:issue:`8080`)
- Bug in ``DataFrame.plot`` and ``Series.plot`` may ignore ``rot`` and ``fontsize`` keywords (:issue:`7844`)
- Bug in ``DatetimeIndex.value_counts`` doesn't preserve tz (:issue:`7735`)
- Bug in ``PeriodIndex.value_counts`` results in ``Int64Index`` (:issue:`7735`)
- Bug in ``DataFrame.join`` when doing left join on index and there are multiple matches (:issue:`5391`)
- Bug in ``GroupBy.transform()`` where int groups with a transform that
didn't preserve the index were incorrectly truncated (:issue:`7972`).
- Bug in ``groupby`` where callable objects without name attributes would take the wrong path,
and produce a ``DataFrame`` instead of a ``Series`` (:issue:`7929`)
- Bug in ``read_html`` where the ``infer_types`` argument forced coercion of
date-likes incorrectly (:issue:`7762`, :issue:`7032`).
- Bug in ``Series.str.cat`` with an index which was filtered as to not include the first item (:issue:`7857`)
- Bug in ``Timestamp`` cannot parse ``nanosecond`` from string (:issue:`7878`)
- Bug in ``Timestamp`` with string offset and ``tz`` results incorrect (:issue:`7833`)
- Bug in ``tslib.tz_convert`` and ``tslib.tz_convert_single`` may return different results (:issue:`7798`)
- Bug in ``DatetimeIndex.intersection`` of non-overlapping timestamps with tz raises ``IndexError`` (:issue:`7880`)
- Bug in ``GroupBy.filter()`` where fast path vs. slow path made the filter
return a non scalar value that appeared valid but wasn't (:issue:`7870`).
- Bug in ``date_range()``/``DatetimeIndex()`` when the timezone was inferred from input dates yet incorrect
times were returned when crossing DST boundaries (:issue:`7835`, :issue:`7901`).
- Bug in area plot draws legend with incorrect ``alpha`` when ``stacked=True`` (:issue:`8027`)
- ``Period`` and ``PeriodIndex`` addition/subtraction with ``np.timedelta64`` results in incorrect internal representations (:issue:`7740`)
- ``Holiday`` bug in Holiday with no offset or observance (:issue:`7987`)
- Bug in ``DataFrame.to_latex`` formatting when columns or index is a ``MultiIndex`` (:issue:`7982`).
- Bug in ``DataFrame.shift`` where empty columns would throw ``ZeroDivisionError`` on numpy 1.7 (:issue:`8019`)
- Bug in installation where ``html_encoding/*.html`` wasn't installed and
therefore some tests were not running correctly (:issue:`7927`).
- Bug in ``read_html`` where ``bytes`` objects were not tested for in
``_read`` (:issue:`7927`).
- Bug in ``DataFrame.stack()`` when one of the column levels was a datelike (:issue:`8039`)
- Bug in broadcasting numpy scalars with DataFrames (:issue:`8116`)
- Bug in ``pivot_table`` performed with nameless ``index`` and ``columns`` raises ``KeyError`` (:issue:`8103`)
- Bug in ``Float64Index`` where ``iat`` and ``at`` were not testing and were
failing (:issue:`8092`).
- Bug in ``read_csv`` where line comments were not handled correctly given
a custom line terminator or ``delim_whitespace=True`` (:issue:`8122`).
- Bug in accessing groups from a ``GroupBy`` when the original grouper
was a tuple (:issue:`8121`).