forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_integer.py
696 lines (524 loc) · 21.3 KB
/
test_integer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
# -*- coding: utf-8 -*-
import numpy as np
import pytest
from pandas.core.dtypes.generic import ABCIndexClass
import pandas as pd
from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar
from pandas.core.arrays import IntegerArray, integer_array
from pandas.core.arrays.integer import (
Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype,
UInt32Dtype, UInt64Dtype)
from pandas.tests.extension.base import BaseOpsUtil
import pandas.util.testing as tm
def make_data():
return (list(range(8)) +
[np.nan] +
list(range(10, 98)) +
[np.nan] +
[99, 100])
@pytest.fixture(params=[Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype,
UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype])
def dtype(request):
return request.param()
@pytest.fixture
def data(dtype):
return integer_array(make_data(), dtype=dtype)
@pytest.fixture
def data_missing(dtype):
return integer_array([np.nan, 1], dtype=dtype)
@pytest.fixture(params=['data', 'data_missing'])
def all_data(request, data, data_missing):
"""Parametrized fixture giving 'data' and 'data_missing'"""
if request.param == 'data':
return data
elif request.param == 'data_missing':
return data_missing
def test_dtypes(dtype):
# smoke tests on auto dtype construction
if dtype.is_signed_integer:
assert np.dtype(dtype.type).kind == 'i'
else:
assert np.dtype(dtype.type).kind == 'u'
assert dtype.name is not None
class TestInterface(object):
def test_repr_array(self, data):
result = repr(data)
# not long
assert '...' not in result
assert 'dtype=' in result
assert 'IntegerArray' in result
def test_repr_array_long(self, data):
# some arrays may be able to assert a ... in the repr
with pd.option_context('display.max_seq_items', 1):
result = repr(data)
assert '...' in result
assert 'length' in result
class TestConstructors(object):
def test_from_dtype_from_float(self, data):
# construct from our dtype & string dtype
dtype = data.dtype
# from float
expected = pd.Series(data)
result = pd.Series(np.array(data).astype('float'), dtype=str(dtype))
tm.assert_series_equal(result, expected)
# from int / list
expected = pd.Series(data)
result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
tm.assert_series_equal(result, expected)
# from int / array
expected = pd.Series(data).dropna().reset_index(drop=True)
dropped = np.array(data.dropna()).astype(np.dtype((dtype.type)))
result = pd.Series(dropped, dtype=str(dtype))
tm.assert_series_equal(result, expected)
class TestArithmeticOps(BaseOpsUtil):
def _check_divmod_op(self, s, op, other, exc=None):
super(TestArithmeticOps, self)._check_divmod_op(s, op, other, None)
def _check_op(self, s, op_name, other, exc=None):
op = self.get_op_from_name(op_name)
result = op(s, other)
# compute expected
mask = s.isna()
# if s is a DataFrame, squeeze to a Series
# for comparison
if isinstance(s, pd.DataFrame):
result = result.squeeze()
s = s.squeeze()
mask = mask.squeeze()
# other array is an Integer
if isinstance(other, IntegerArray):
omask = getattr(other, 'mask', None)
mask = getattr(other, 'data', other)
if omask is not None:
mask |= omask
# 1 ** na is na, so need to unmask those
if op_name == '__pow__':
mask = np.where(s == 1, False, mask)
elif op_name == '__rpow__':
mask = np.where(other == 1, False, mask)
# float result type or float op
if ((is_float_dtype(other) or is_float(other) or
op_name in ['__rtruediv__', '__truediv__',
'__rdiv__', '__div__'])):
rs = s.astype('float')
expected = op(rs, other)
self._check_op_float(result, expected, mask, s, op_name, other)
# integer result type
else:
rs = pd.Series(s.values._data)
expected = op(rs, other)
self._check_op_integer(result, expected, mask, s, op_name, other)
def _check_op_float(self, result, expected, mask, s, op_name, other):
# check comparisions that are resulting in float dtypes
expected[mask] = np.nan
tm.assert_series_equal(result, expected)
def _check_op_integer(self, result, expected, mask, s, op_name, other):
# check comparisions that are resulting in integer dtypes
# to compare properly, we convert the expected
# to float, mask to nans and convert infs
# if we have uints then we process as uints
# then conert to float
# and we ultimately want to create a IntArray
# for comparisons
fill_value = 0
# mod/rmod turn floating 0 into NaN while
# integer works as expected (no nan)
if op_name in ['__mod__', '__rmod__']:
if is_scalar(other):
if other == 0:
expected[s.values == 0] = 0
else:
expected = expected.fillna(0)
else:
expected[(s.values == 0) &
((expected == 0) | expected.isna())] = 0
try:
expected[(expected == np.inf) | (expected == -np.inf)] = fill_value
original = expected
expected = expected.astype(s.dtype)
except ValueError:
expected = expected.astype(float)
expected[(expected == np.inf) | (expected == -np.inf)] = fill_value
original = expected
expected = expected.astype(s.dtype)
expected[mask] = np.nan
# assert that the expected astype is ok
# (skip for unsigned as they have wrap around)
if not s.dtype.is_unsigned_integer:
original = pd.Series(original)
# we need to fill with 0's to emulate what an astype('int') does
# (truncation) for certain ops
if op_name in ['__rtruediv__', '__rdiv__']:
mask |= original.isna()
original = original.fillna(0).astype('int')
original = original.astype('float')
original[mask] = np.nan
tm.assert_series_equal(original, expected.astype('float'))
# assert our expected result
tm.assert_series_equal(result, expected)
def test_arith_integer_array(self, data, all_arithmetic_operators):
# we operate with a rhs of an integer array
op = all_arithmetic_operators
s = pd.Series(data)
rhs = pd.Series([1] * len(data), dtype=data.dtype)
rhs.iloc[-1] = np.nan
self._check_op(s, op, rhs)
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
# scalar
op = all_arithmetic_operators
s = pd.Series(data)
self._check_op(s, op, 1, exc=TypeError)
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
# frame & scalar
op = all_arithmetic_operators
df = pd.DataFrame({'A': data})
self._check_op(df, op, 1, exc=TypeError)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
# ndarray & other series
op = all_arithmetic_operators
s = pd.Series(data)
other = np.ones(len(s), dtype=s.dtype.type)
self._check_op(s, op, other, exc=TypeError)
def test_arith_coerce_scalar(self, data, all_arithmetic_operators):
op = all_arithmetic_operators
s = pd.Series(data)
other = 0.01
self._check_op(s, op, other)
@pytest.mark.parametrize("other", [1., 1.0, np.array(1.), np.array([1.])])
def test_arithmetic_conversion(self, all_arithmetic_operators, other):
# if we have a float operand we should have a float result
# if that is equal to an integer
op = self.get_op_from_name(all_arithmetic_operators)
s = pd.Series([1, 2, 3], dtype='Int64')
result = op(s, other)
assert result.dtype is np.dtype('float')
@pytest.mark.parametrize("other", [0, 0.5])
def test_arith_zero_dim_ndarray(self, other):
arr = integer_array([1, None, 2])
result = arr + np.array(other)
expected = arr + other
tm.assert_equal(result, expected)
def test_error(self, data, all_arithmetic_operators):
# invalid ops
op = all_arithmetic_operators
s = pd.Series(data)
ops = getattr(s, op)
opa = getattr(data, op)
# invalid scalars
with pytest.raises(TypeError):
ops('foo')
with pytest.raises(TypeError):
ops(pd.Timestamp('20180101'))
# invalid array-likes
with pytest.raises(TypeError):
ops(pd.Series('foo', index=s.index))
if op != '__rpow__':
# TODO(extension)
# rpow with a datetimelike coerces the integer array incorrectly
with pytest.raises(TypeError):
ops(pd.Series(pd.date_range('20180101', periods=len(s))))
# 2d
with pytest.raises(NotImplementedError):
opa(pd.DataFrame({'A': s}))
with pytest.raises(NotImplementedError):
opa(np.arange(len(s)).reshape(-1, len(s)))
def test_pow(self):
# https://github.com/pandas-dev/pandas/issues/22022
a = integer_array([1, np.nan, np.nan, 1])
b = integer_array([1, np.nan, 1, np.nan])
result = a ** b
expected = pd.core.arrays.integer_array([1, np.nan, np.nan, 1])
tm.assert_extension_array_equal(result, expected)
def test_rpow_one_to_na(self):
# https://github.com/pandas-dev/pandas/issues/22022
arr = integer_array([np.nan, np.nan])
result = np.array([1.0, 2.0]) ** arr
expected = np.array([1.0, np.nan])
tm.assert_numpy_array_equal(result, expected)
class TestComparisonOps(BaseOpsUtil):
def _compare_other(self, data, op_name, other):
op = self.get_op_from_name(op_name)
# array
result = pd.Series(op(data, other))
expected = pd.Series(op(data._data, other))
# fill the nan locations
expected[data._mask] = True if op_name == '__ne__' else False
tm.assert_series_equal(result, expected)
# series
s = pd.Series(data)
result = op(s, other)
expected = pd.Series(data._data)
expected = op(expected, other)
# fill the nan locations
expected[data._mask] = True if op_name == '__ne__' else False
tm.assert_series_equal(result, expected)
def test_compare_scalar(self, data, all_compare_operators):
op_name = all_compare_operators
self._compare_other(data, op_name, 0)
def test_compare_array(self, data, all_compare_operators):
op_name = all_compare_operators
other = pd.Series([0] * len(data))
self._compare_other(data, op_name, other)
class TestCasting(object):
pass
@pytest.mark.parametrize('dropna', [True, False])
def test_construct_index(self, all_data, dropna):
# ensure that we do not coerce to Float64Index, rather
# keep as Index
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
result = pd.Index(integer_array(other, dtype=all_data.dtype))
expected = pd.Index(other, dtype=object)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize('dropna', [True, False])
def test_astype_index(self, all_data, dropna):
# as an int/uint index to Index
all_data = all_data[:10]
if dropna:
other = all_data[~all_data.isna()]
else:
other = all_data
dtype = all_data.dtype
idx = pd.Index(np.array(other))
assert isinstance(idx, ABCIndexClass)
result = idx.astype(dtype)
expected = idx.astype(object).astype(dtype)
tm.assert_index_equal(result, expected)
def test_astype(self, all_data):
all_data = all_data[:10]
ints = all_data[~all_data.isna()]
mixed = all_data
dtype = Int8Dtype()
# coerce to same type - ints
s = pd.Series(ints)
result = s.astype(all_data.dtype)
expected = pd.Series(ints)
tm.assert_series_equal(result, expected)
# coerce to same other - ints
s = pd.Series(ints)
result = s.astype(dtype)
expected = pd.Series(ints, dtype=dtype)
tm.assert_series_equal(result, expected)
# coerce to same numpy_dtype - ints
s = pd.Series(ints)
result = s.astype(all_data.dtype.numpy_dtype)
expected = pd.Series(ints._data.astype(
all_data.dtype.numpy_dtype))
tm.assert_series_equal(result, expected)
# coerce to same type - mixed
s = pd.Series(mixed)
result = s.astype(all_data.dtype)
expected = pd.Series(mixed)
tm.assert_series_equal(result, expected)
# coerce to same other - mixed
s = pd.Series(mixed)
result = s.astype(dtype)
expected = pd.Series(mixed, dtype=dtype)
tm.assert_series_equal(result, expected)
# coerce to same numpy_dtype - mixed
s = pd.Series(mixed)
with pytest.raises(ValueError):
s.astype(all_data.dtype.numpy_dtype)
# coerce to object
s = pd.Series(mixed)
result = s.astype('object')
expected = pd.Series(np.asarray(mixed))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize('dtype', [Int8Dtype(), 'Int8',
UInt32Dtype(), 'UInt32'])
def test_astype_specific_casting(self, dtype):
s = pd.Series([1, 2, 3], dtype='Int64')
result = s.astype(dtype)
expected = pd.Series([1, 2, 3], dtype=dtype)
tm.assert_series_equal(result, expected)
s = pd.Series([1, 2, 3, None], dtype='Int64')
result = s.astype(dtype)
expected = pd.Series([1, 2, 3, None], dtype=dtype)
tm.assert_series_equal(result, expected)
def test_construct_cast_invalid(self, dtype):
msg = "cannot safely"
arr = [1.2, 2.3, 3.7]
with tm.assert_raises_regex(TypeError, msg):
integer_array(arr, dtype=dtype)
with tm.assert_raises_regex(TypeError, msg):
pd.Series(arr).astype(dtype)
arr = [1.2, 2.3, 3.7, np.nan]
with tm.assert_raises_regex(TypeError, msg):
integer_array(arr, dtype=dtype)
with tm.assert_raises_regex(TypeError, msg):
pd.Series(arr).astype(dtype)
def test_frame_repr(data_missing):
df = pd.DataFrame({'A': data_missing})
result = repr(df)
expected = ' A\n0 NaN\n1 1'
assert result == expected
def test_conversions(data_missing):
# astype to object series
df = pd.DataFrame({'A': data_missing})
result = df['A'].astype('object')
expected = pd.Series(np.array([np.nan, 1], dtype=object), name='A')
tm.assert_series_equal(result, expected)
# convert to object ndarray
# we assert that we are exactly equal
# including type conversions of scalars
result = df['A'].astype('object').values
expected = np.array([np.nan, 1], dtype=object)
tm.assert_numpy_array_equal(result, expected)
for r, e in zip(result, expected):
if pd.isnull(r):
assert pd.isnull(e)
elif is_integer(r):
# PY2 can be int or long
assert r == e
assert is_integer(e)
else:
assert r == e
assert type(r) == type(e)
def test_integer_array_constructor():
values = np.array([1, 2, 3, 4], dtype='int64')
mask = np.array([False, False, False, True], dtype='bool')
result = IntegerArray(values, mask)
expected = integer_array([1, 2, 3, np.nan], dtype='int64')
tm.assert_extension_array_equal(result, expected)
with pytest.raises(TypeError):
IntegerArray(values.tolist(), mask)
with pytest.raises(TypeError):
IntegerArray(values, mask.tolist())
with pytest.raises(TypeError):
IntegerArray(values.astype(float), mask)
with pytest.raises(TypeError):
IntegerArray(values)
@pytest.mark.parametrize('a, b', [
([1, None], [1, np.nan]),
([None], [np.nan]),
([None, np.nan], [np.nan, np.nan]),
([np.nan, np.nan], [np.nan, np.nan]),
])
def test_integer_array_constructor_none_is_nan(a, b):
result = integer_array(a)
expected = integer_array(b)
tm.assert_extension_array_equal(result, expected)
def test_integer_array_constructor_copy():
values = np.array([1, 2, 3, 4], dtype='int64')
mask = np.array([False, False, False, True], dtype='bool')
result = IntegerArray(values, mask)
assert result._data is values
assert result._mask is mask
result = IntegerArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
@pytest.mark.parametrize(
'values',
[
['foo', 'bar'],
['1', '2'],
'foo',
1,
1.0,
pd.date_range('20130101', periods=2),
np.array(['foo']),
[[1, 2], [3, 4]],
[np.nan, {'a': 1}]])
def test_to_integer_array_error(values):
# error in converting existing arrays to IntegerArrays
with pytest.raises(TypeError):
integer_array(values)
def test_to_integer_array_inferred_dtype():
# if values has dtype -> respect it
result = integer_array(np.array([1, 2], dtype='int8'))
assert result.dtype == Int8Dtype()
result = integer_array(np.array([1, 2], dtype='int32'))
assert result.dtype == Int32Dtype()
# if values have no dtype -> always int64
result = integer_array([1, 2])
assert result.dtype == Int64Dtype()
def test_to_integer_array_dtype_keyword():
result = integer_array([1, 2], dtype='int8')
assert result.dtype == Int8Dtype()
# if values has dtype -> override it
result = integer_array(np.array([1, 2], dtype='int8'), dtype='int32')
assert result.dtype == Int32Dtype()
def test_to_integer_array_float():
result = integer_array([1., 2.])
expected = integer_array([1, 2])
tm.assert_extension_array_equal(result, expected)
with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
integer_array([1.5, 2.])
# for float dtypes, the itemsize is not preserved
result = integer_array(np.array([1., 2.], dtype='float32'))
assert result.dtype == Int64Dtype()
@pytest.mark.parametrize(
'values, to_dtype, result_dtype',
[
(np.array([1], dtype='int64'), None, Int64Dtype),
(np.array([1, np.nan]), None, Int64Dtype),
(np.array([1, np.nan]), 'int8', Int8Dtype)])
def test_to_integer_array(values, to_dtype, result_dtype):
# convert existing arrays to IntegerArrays
result = integer_array(values, dtype=to_dtype)
assert result.dtype == result_dtype()
expected = integer_array(values, dtype=result_dtype())
tm.assert_extension_array_equal(result, expected)
def test_cross_type_arithmetic():
df = pd.DataFrame({'A': pd.Series([1, 2, np.nan], dtype='Int64'),
'B': pd.Series([1, np.nan, 3], dtype='UInt8'),
'C': [1, 2, 3]})
result = df.A + df.C
expected = pd.Series([2, 4, np.nan], dtype='Int64')
tm.assert_series_equal(result, expected)
result = (df.A + df.C) * 3 == 12
expected = pd.Series([False, True, False])
tm.assert_series_equal(result, expected)
result = df.A + df.B
expected = pd.Series([2, np.nan, np.nan], dtype='Int64')
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize('op', ['sum', 'min', 'max', 'prod'])
def test_preserve_dtypes(op):
# TODO(#22346): preserve Int64 dtype
# for ops that enable (mean would actually work here
# but generally it is a float return value)
df = pd.DataFrame({
"A": ['a', 'b', 'b'],
"B": [1, None, 3],
"C": integer_array([1, None, 3], dtype='Int64'),
})
# op
result = getattr(df.C, op)()
assert isinstance(result, int)
# groupby
result = getattr(df.groupby("A"), op)()
expected = pd.DataFrame({
"B": np.array([1.0, 3.0]),
"C": integer_array([1, 3], dtype="Int64")
}, index=pd.Index(['a', 'b'], name='A'))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('op', ['mean'])
def test_reduce_to_float(op):
# some reduce ops always return float, even if the result
# is a rounded number
df = pd.DataFrame({
"A": ['a', 'b', 'b'],
"B": [1, None, 3],
"C": integer_array([1, None, 3], dtype='Int64'),
})
# op
result = getattr(df.C, op)()
assert isinstance(result, float)
# groupby
result = getattr(df.groupby("A"), op)()
expected = pd.DataFrame({
"B": np.array([1.0, 3.0]),
"C": integer_array([1, 3], dtype="Int64")
}, index=pd.Index(['a', 'b'], name='A'))
tm.assert_frame_equal(result, expected)
def test_astype_nansafe():
# https://github.com/pandas-dev/pandas/pull/22343
arr = integer_array([np.nan, 1, 2], dtype="Int8")
with tm.assert_raises_regex(
ValueError, 'cannot convert float NaN to integer'):
arr.astype('uint32')
# TODO(jreback) - these need testing / are broken
# shift
# set_index (destroys type)