forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_timedeltas.py
139 lines (104 loc) · 4.57 KB
/
test_timedeltas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
import numpy as np
import pytest
import pandas as pd
from pandas.core.arrays import TimedeltaArray
import pandas.util.testing as tm
class TestTimedeltaArrayConstructor(object):
def test_freq_validation(self):
# ensure that the public constructor cannot create an invalid instance
arr = np.array([0, 0, 1], dtype=np.int64) * 3600 * 10**9
msg = ("Inferred frequency None from passed values does not "
"conform to passed frequency D")
with pytest.raises(ValueError, match=msg):
TimedeltaArray(arr.view('timedelta64[ns]'), freq="D")
def test_non_array_raises(self):
with pytest.raises(ValueError, match='list'):
TimedeltaArray([1, 2, 3])
def test_other_type_raises(self):
with pytest.raises(ValueError,
match="dtype bool cannot be converted"):
TimedeltaArray(np.array([1, 2, 3], dtype='bool'))
def test_incorrect_dtype_raises(self):
# TODO: why TypeError for 'category' but ValueError for i8?
with pytest.raises(ValueError,
match=r'category cannot be converted '
r'to timedelta64\[ns\]'):
TimedeltaArray(np.array([1, 2, 3], dtype='i8'), dtype='category')
with pytest.raises(ValueError,
match=r"dtype int64 cannot be converted "
r"to timedelta64\[ns\]"):
TimedeltaArray(np.array([1, 2, 3], dtype='i8'),
dtype=np.dtype("int64"))
def test_copy(self):
data = np.array([1, 2, 3], dtype='m8[ns]')
arr = TimedeltaArray(data, copy=False)
assert arr._data is data
arr = TimedeltaArray(data, copy=True)
assert arr._data is not data
assert arr._data.base is not data
class TestTimedeltaArray(object):
def test_from_sequence_dtype(self):
msg = "dtype .*object.* cannot be converted to timedelta64"
with pytest.raises(ValueError, match=msg):
TimedeltaArray._from_sequence([], dtype=object)
def test_abs(self):
vals = np.array([-3600 * 10**9, 'NaT', 7200 * 10**9], dtype='m8[ns]')
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, 'NaT', 7200 * 10**9], dtype='m8[ns]')
expected = TimedeltaArray(evals)
result = abs(arr)
tm.assert_timedelta_array_equal(result, expected)
def test_neg(self):
vals = np.array([-3600 * 10**9, 'NaT', 7200 * 10**9], dtype='m8[ns]')
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, 'NaT', -7200 * 10**9], dtype='m8[ns]')
expected = TimedeltaArray(evals)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
def test_neg_freq(self):
tdi = pd.timedelta_range('2 Days', periods=4, freq='H')
arr = TimedeltaArray(tdi, freq=tdi.freq)
expected = TimedeltaArray(-tdi._data, freq=-tdi.freq)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
@pytest.mark.parametrize("dtype", [
int, np.int32, np.int64, 'uint32', 'uint64',
])
def test_astype_int(self, dtype):
arr = TimedeltaArray._from_sequence([pd.Timedelta('1H'),
pd.Timedelta('2H')])
result = arr.astype(dtype)
if np.dtype(dtype).kind == 'u':
expected_dtype = np.dtype('uint64')
else:
expected_dtype = np.dtype('int64')
expected = arr.astype(expected_dtype)
assert result.dtype == expected_dtype
tm.assert_numpy_array_equal(result, expected)
def test_setitem_clears_freq(self):
a = TimedeltaArray(pd.timedelta_range('1H', periods=2, freq='H'))
a[0] = pd.Timedelta("1H")
assert a.freq is None
class TestReductions(object):
def test_min_max(self):
arr = TimedeltaArray._from_sequence([
'3H', '3H', 'NaT', '2H', '5H', '4H',
])
result = arr.min()
expected = pd.Timedelta('2H')
assert result == expected
result = arr.max()
expected = pd.Timedelta('5H')
assert result == expected
result = arr.min(skipna=False)
assert result is pd.NaT
result = arr.max(skipna=False)
assert result is pd.NaT
@pytest.mark.parametrize('skipna', [True, False])
def test_min_max_empty(self, skipna):
arr = TimedeltaArray._from_sequence([])
result = arr.min(skipna=skipna)
assert result is pd.NaT
result = arr.max(skipna=skipna)
assert result is pd.NaT