forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathv0.21.0.txt
1113 lines (767 loc) · 51.2 KB
/
v0.21.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
.. _whatsnew_0210:
v0.21.0 RC1 (October 13, 2017)
------------------------------
This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- Integration with `Apache Parquet <https://parquet.apache.org/>`__, including a new top-level :func:`read_parquet` function and :meth:`DataFrame.to_parquet` method, see :ref:`here <io.parquet>`.
- New user-facing :class:`pandas.api.types.CategoricalDtype` for specifying
categoricals independent of the data, see :ref:`here <whatsnew_0210.enhancements.categorical_dtype>`.
- The behavior of ``sum`` and ``prod`` on all-NaN Series/DataFrames is now consistent and no longer depends on whether `bottleneck <http://berkeleyanalytics.com/bottleneck>`__ is installed, see :ref:`here <whatsnew_0210.api_breaking.bottleneck>`
- Compatibility fixes for pypy, see :ref:`here <whatsnew_0210.pypy>`.
- ``GroupBy`` objects now have a ``pipe`` method, similar to the one on ``DataFrame`` and ``Series``.
This allows for functions that take a ``GroupBy`` to be composed in a clean, readable syntax, see :ref:`here <whatsnew_0210.enhancements.GroupBy_pipe>`.
Check the :ref:`API Changes <whatsnew_0210.api_breaking>` and :ref:`deprecations <whatsnew_0210.deprecations>` before updating.
.. contents:: What's new in v0.21.0
:local:
:backlinks: none
.. _whatsnew_0210.enhancements:
New features
~~~~~~~~~~~~
- Support for `PEP 519 -- Adding a file system path protocol
<https://www.python.org/dev/peps/pep-0519/>`_ on most readers and writers (:issue:`13823`)
- Added ``__fspath__`` method to :class:`~pandas.HDFStore`, :class:`~pandas.ExcelFile`,
and :class:`~pandas.ExcelWriter` to work properly with the file system path protocol (:issue:`13823`)
- Added ``skipna`` parameter to :func:`~pandas.api.types.infer_dtype` to
support type inference in the presence of missing values (:issue:`17059`).
- :class:`~pandas.Resampler.nearest` is added to support nearest-neighbor upsampling (:issue:`17496`).
- :class:`~pandas.Index` has added support for a ``to_frame`` method (:issue:`15230`)
.. _whatsnew_0210.enhancements.infer_objects:
``infer_objects`` type conversion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`DataFrame.infer_objects` and :meth:`Series.infer_objects`
methods have been added to perform dtype inference on object columns, replacing
some of the functionality of the deprecated ``convert_objects``
method. See the documentation :ref:`here <basics.object_conversion>`
for more details. (:issue:`11221`)
This method only performs soft conversions on object columns, converting Python objects
to native types, but not any coercive conversions. For example:
.. ipython:: python
df = pd.DataFrame({'A': [1, 2, 3],
'B': np.array([1, 2, 3], dtype='object'),
'C': ['1', '2', '3']})
df.dtypes
df.infer_objects().dtypes
Note that column ``'C'`` was not converted - only scalar numeric types
will be converted to a new type. Other types of conversion should be accomplished
using the :func:`to_numeric` function (or :func:`to_datetime`, :func:`to_timedelta`).
.. ipython:: python
df = df.infer_objects()
df['C'] = pd.to_numeric(df['C'], errors='coerce')
df.dtypes
.. _whatsnew_0210.enhancements.attribute_access:
Improved warnings when attempting to create columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
New users are often flummoxed by the relationship between column operations and
attribute access on ``DataFrame`` instances (:issue:`7175`). One specific
instance of this confusion is attempting to create a new column by setting an
attribute on the ``DataFrame``:
.. code-block:: ipython
In[1]: df = pd.DataFrame({'one': [1., 2., 3.]})
In[2]: df.two = [4, 5, 6]
This does not raise any obvious exceptions, but also does not create a new column:
.. code-block:: ipython
In[3]: df
Out[3]:
one
0 1.0
1 2.0
2 3.0
Setting a list-like data structure into a new attribute now raise a ``UserWarning`` about the potential for unexpected behavior. See :ref:`Attribute Access <indexing.attribute_access>`.
``drop`` now also accepts index/columns keywords
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`~DataFrame.drop` method has gained ``index``/``columns`` keywords as an
alternative to specifying the ``axis``. This is similar to the behavior of ``reindex``
(:issue:`12392`).
For example:
.. ipython:: python
df = pd.DataFrame(np.arange(8).reshape(2,4),
columns=['A', 'B', 'C', 'D'])
df
df.drop(['B', 'C'], axis=1)
# the following is now equivalent
df.drop(columns=['B', 'C'])
.. _whatsnew_0210.enhancements.rename_reindex_axis:
``rename``, ``reindex`` now also accept axis keyword
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`DataFrame.rename` and :meth:`DataFrame.reindex` methods have gained
the ``axis`` keyword to specify the axis to target with the operation
(:issue:`12392`).
Here's ``rename``:
.. ipython:: python
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df.rename(str.lower, axis='columns')
df.rename(id, axis='index')
And ``reindex``:
.. ipython:: python
df.reindex(['A', 'B', 'C'], axis='columns')
df.reindex([0, 1, 3], axis='index')
The "index, columns" style continues to work as before.
.. ipython:: python
df.rename(index=id, columns=str.lower)
df.reindex(index=[0, 1, 3], columns=['A', 'B', 'C'])
We *highly* encourage using named arguments to avoid confusion when using either
style.
.. _whatsnew_0210.enhancements.categorical_dtype:
``CategoricalDtype`` for specifying categoricals
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`pandas.api.types.CategoricalDtype` has been added to the public API and
expanded to include the ``categories`` and ``ordered`` attributes. A
``CategoricalDtype`` can be used to specify the set of categories and
orderedness of an array, independent of the data. This can be useful for example,
when converting string data to a ``Categorical`` (:issue:`14711`,
:issue:`15078`, :issue:`16015`, :issue:`17643`):
.. ipython:: python
from pandas.api.types import CategoricalDtype
s = pd.Series(['a', 'b', 'c', 'a']) # strings
dtype = CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True)
s.astype(dtype)
One place that deserves special mention is in :meth:`read_csv`. Previously, with
``dtype={'col': 'category'}``, the returned values and categories would always
be strings.
.. ipython:: python
:suppress:
from pandas.compat import StringIO
.. ipython:: python
data = 'A,B\na,1\nb,2\nc,3'
pd.read_csv(StringIO(data), dtype={'B': 'category'}).B.cat.categories
Notice the "object" dtype.
With a ``CategoricalDtype`` of all numerics, datetimes, or
timedeltas, we can automatically convert to the correct type
.. ipython:: python
dtype = {'B': CategoricalDtype([1, 2, 3])}
pd.read_csv(StringIO(data), dtype=dtype).B.cat.categories
The values have been correctly interpreted as integers.
The ``.dtype`` property of a ``Categorical``, ``CategoricalIndex`` or a
``Series`` with categorical type will now return an instance of
``CategoricalDtype``. While the repr has changed, ``str(CategoricalDtype())`` is
still the string ``'category'``. We'll take this moment to remind users that the
*preferred* way to detect categorical data is to use
:func:`pandas.api.types.is_categorical_dtype`, and not ``str(dtype) == 'category'``.
See the :ref:`CategoricalDtype docs <categorical.categoricaldtype>` for more.
.. _whatsnew_0210.enhancements.GroupBy_pipe:
``GroupBy`` objects now have a ``pipe`` method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``GroupBy`` objects now have a ``pipe`` method, similar to the one on
``DataFrame`` and ``Series``, that allow for functions that take a
``GroupBy`` to be composed in a clean, readable syntax. (:issue:`17871`)
For a concrete example on combining ``.groupby`` and ``.pipe`` , imagine having a
DataFrame with columns for stores, products, revenue and sold quantity. We'd like to
do a groupwise calculation of *prices* (i.e. revenue/quantity) per store and per product.
We could do this in a multi-step operation, but expressing it in terms of piping can make the
code more readable.
First we set the data:
.. ipython:: python
import numpy as np
n = 1000
df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n),
'Product': np.random.choice(['Product_1', 'Product_2', 'Product_3'], n),
'Revenue': (np.random.random(n)*50+10).round(2),
'Quantity': np.random.randint(1, 10, size=n)})
df.head(2)
Now, to find prices per store/product, we can simply do:
.. ipython:: python
(df.groupby(['Store', 'Product'])
.pipe(lambda grp: grp.Revenue.sum()/grp.Quantity.sum())
.unstack().round(2))
.. _whatsnew_0210.enhancements.reanme_categories:
``Categorical.rename_categories`` accepts a dict-like
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`~Series.cat.rename_categories` now accepts a dict-like argument for
``new_categories``. The previous categories are lookup up in the dictionary's
keys and replaced if found. The behavior of missing and extra keys is the same
as in :meth:`DataFrame.rename`.
.. ipython:: python
c = pd.Categorical(['a', 'a', 'b'])
c.rename_categories({"a": "eh", "b": "bee"})
.. warning::
To assist with upgrading pandas, ``rename_categories`` treats ``Series`` as
list-like. Typically, they are considered to be dict-like, and in a future
version of pandas ``rename_categories`` will change to treat them as
dict-like.
.. ipython:: python
:okwarning:
c.rename_categories(pd.Series([0, 1], index=['a', 'c']))
Follow the warning message's recommendations.
See the :ref:`documentation <groupby.pipe>` for more.
.. _whatsnew_0210.enhancements.other:
Other Enhancements
^^^^^^^^^^^^^^^^^^
- The ``validate`` argument for :func:`merge` now checks whether a merge is one-to-one, one-to-many, many-to-one, or many-to-many. If a merge is found to not be an example of specified merge type, an exception of type ``MergeError`` will be raised. For more, see :ref:`here <merging.validation>` (:issue:`16270`)
- Added support for `PEP 518 <https://www.python.org/dev/peps/pep-0518/>`_ (``pyproject.toml``) to the build system (:issue:`16745`)
- :func:`Series.to_dict` and :func:`DataFrame.to_dict` now support an ``into`` keyword which allows you to specify the ``collections.Mapping`` subclass that you would like returned. The default is ``dict``, which is backwards compatible. (:issue:`16122`)
- :func:`RangeIndex.append` now returns a ``RangeIndex`` object when possible (:issue:`16212`)
- :func:`Series.rename_axis` and :func:`DataFrame.rename_axis` with ``inplace=True`` now return ``None`` while renaming the axis inplace. (:issue:`15704`)
- :func:`Series.set_axis` and :func:`DataFrame.set_axis` now support the ``inplace`` parameter. (:issue:`14636`)
- :func:`Series.to_pickle` and :func:`DataFrame.to_pickle` have gained a ``protocol`` parameter (:issue:`16252`). By default, this parameter is set to `HIGHEST_PROTOCOL <https://docs.python.org/3/library/pickle.html#data-stream-format>`__
- :func:`api.types.infer_dtype` now infers decimals. (:issue:`15690`)
- :func:`read_feather` has gained the ``nthreads`` parameter for multi-threaded operations (:issue:`16359`)
- :func:`DataFrame.clip()` and :func:`Series.clip()` have gained an ``inplace`` argument. (:issue:`15388`)
- :func:`crosstab` has gained a ``margins_name`` parameter to define the name of the row / column that will contain the totals when ``margins=True``. (:issue:`15972`)
- :func:`DataFrame.select_dtypes` now accepts scalar values for include/exclude as well as list-like. (:issue:`16855`)
- :func:`date_range` now accepts 'YS' in addition to 'AS' as an alias for start of year. (:issue:`9313`)
- :func:`date_range` now accepts 'Y' in addition to 'A' as an alias for end of year. (:issue:`9313`)
- Integration with `Apache Parquet <https://parquet.apache.org/>`__, including a new top-level :func:`read_parquet` and :func:`DataFrame.to_parquet` method, see :ref:`here <io.parquet>`. (:issue:`15838`, :issue:`17438`)
- :func:`DataFrame.add_prefix` and :func:`DataFrame.add_suffix` now accept strings containing the '%' character. (:issue:`17151`)
- Read/write methods that infer compression (:func:`read_csv`, :func:`read_table`, :func:`read_pickle`, and :meth:`~DataFrame.to_pickle`) can now infer from path-like objects, such as ``pathlib.Path``. (:issue:`17206`)
- :func:`pd.read_sas()` now recognizes much more of the most frequently used date (datetime) formats in SAS7BDAT files. (:issue:`15871`)
- :func:`DataFrame.items` and :func:`Series.items` are now present in both Python 2 and 3 and is lazy in all cases. (:issue:`13918`, :issue:`17213`)
- :func:`Styler.where` has been implemented as a convenience for :func:`Styler.applymap`. (:issue:`17474`)
- :func:`MultiIndex.is_monotonic_decreasing` has been implemented. Previously returned ``False`` in all cases. (:issue:`16554`)
- :func:`read_excel` raises ``ImportError`` with a better message if ``xlrd`` is not installed. (:issue:`17613`)
- :func:`read_json` now accepts a ``chunksize`` parameter that can be used when ``lines=True``. If ``chunksize`` is passed, read_json now returns an iterator which reads in ``chunksize`` lines with each iteration. (:issue:`17048`)
- :meth:`DataFrame.assign` will preserve the original order of ``**kwargs`` for Python 3.6+ users instead of sorting the column names. (:issue:`14207`)
- Improved the import time of pandas by about 2.25x. (:issue:`16764`)
- :func:`read_json` and :func:`to_json` now accept a ``compression`` argument which allows them to transparently handle compressed files. (:issue:`17798`)
- :func:`Series.reindex`, :func:`DataFrame.reindex`, :func:`Index.get_indexer` now support list-like argument for ``tolerance``. (:issue:`17367`)
.. _whatsnew_0210.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_0210.api_breaking.deps:
Dependencies have increased minimum versions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We have updated our minimum supported versions of dependencies (:issue:`15206`, :issue:`15543`, :issue:`15214`).
If installed, we now require:
+--------------+-----------------+----------+
| Package | Minimum Version | Required |
+==============+=================+==========+
| Numpy | 1.9.0 | X |
+--------------+-----------------+----------+
| Matplotlib | 1.4.3 | |
+--------------+-----------------+----------+
| Scipy | 0.14.0 | |
+--------------+-----------------+----------+
| Bottleneck | 1.0.0 | |
+--------------+-----------------+----------+
.. _whatsnew_0210.api_breaking.period_index_resampling:
``PeriodIndex`` resampling
^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions of pandas, resampling a ``Series``/``DataFrame`` indexed by a ``PeriodIndex`` returned a ``DatetimeIndex`` in some cases (:issue:`12884`). Resampling to a multiplied frequency now returns a ``PeriodIndex`` (:issue:`15944`). As a minor enhancement, resampling a ``PeriodIndex`` can now handle ``NaT`` values (:issue:`13224`)
Previous Behavior:
.. code-block:: ipython
In [1]: pi = pd.period_range('2017-01', periods=12, freq='M')
In [2]: s = pd.Series(np.arange(12), index=pi)
In [3]: resampled = s.resample('2Q').mean()
In [4]: resampled
Out[4]:
2017-03-31 1.0
2017-09-30 5.5
2018-03-31 10.0
Freq: 2Q-DEC, dtype: float64
In [5]: resampled.index
Out[5]: DatetimeIndex(['2017-03-31', '2017-09-30', '2018-03-31'], dtype='datetime64[ns]', freq='2Q-DEC')
New Behavior:
.. ipython:: python
pi = pd.period_range('2017-01', periods=12, freq='M')
s = pd.Series(np.arange(12), index=pi)
resampled = s.resample('2Q').mean()
resampled
resampled.index
Upsampling and calling ``.ohlc()`` previously returned a ``Series``, basically identical to calling ``.asfreq()``. OHLC upsampling now returns a DataFrame with columns ``open``, ``high``, ``low`` and ``close`` (:issue:`13083`). This is consistent with downsampling and ``DatetimeIndex`` behavior.
Previous Behavior:
.. code-block:: ipython
In [1]: pi = pd.PeriodIndex(start='2000-01-01', freq='D', periods=10)
In [2]: s = pd.Series(np.arange(10), index=pi)
In [3]: s.resample('H').ohlc()
Out[3]:
2000-01-01 00:00 0.0
...
2000-01-10 23:00 NaN
Freq: H, Length: 240, dtype: float64
In [4]: s.resample('M').ohlc()
Out[4]:
open high low close
2000-01 0 9 0 9
New Behavior:
.. ipython:: python
pi = pd.PeriodIndex(start='2000-01-01', freq='D', periods=10)
s = pd.Series(np.arange(10), index=pi)
s.resample('H').ohlc()
s.resample('M').ohlc()
.. _whatsnew_0210.api_breaking.loc:
Indexing with a list with missing labels is Deprecated
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, selecting with a list of labels, where one or more labels were missing would always succeed, returning ``NaN`` for missing labels.
This will now show a ``FutureWarning``. In the future this will raise a ``KeyError`` (:issue:`15747`).
This warning will trigger on a ``DataFrame`` or a ``Series`` for using ``.loc[]`` or ``[[]]`` when passing a list-of-labels with at least 1 missing label.
See the :ref:`deprecation docs <indexing.deprecate_loc_reindex_listlike>`.
.. ipython:: python
s = pd.Series([1, 2, 3])
s
Previous Behavior
.. code-block:: ipython
In [4]: s.loc[[1, 2, 3]]
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64
Current Behavior
.. code-block:: ipython
In [4]: s.loc[[1, 2, 3]]
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64
The idiomatic way to achieve selecting potentially not-found elements is via ``.reindex()``
.. ipython:: python
s.reindex([1, 2, 3])
Selection with all keys found is unchanged.
.. ipython:: python
s.loc[[1, 2]]
.. _whatsnew_0210.api_breaking.loc_with_index:
Indexing with a Boolean Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously when passing a boolean ``Index`` to ``.loc``, if the index of the ``Series/DataFrame`` had ``boolean`` labels,
you would get a label based selection, potentially duplicating result labels, rather than a boolean indexing selection
(where ``True`` selects elements), this was inconsistent how a boolean numpy array indexed. The new behavior is to
act like a boolean numpy array indexer. (:issue:`17738`)
Previous Behavior:
.. ipython:: python
s = pd.Series([1, 2, 3], index=[False, True, False])
s
.. code-block:: ipython
In [59]: s.loc[pd.Index([True, False, True])]
Out[59]:
True 2
False 1
False 3
True 2
dtype: int64
Current Behavior
.. ipython:: python
s.loc[pd.Index([True, False, True])]
Furthermore, previously if you had an index that was non-numeric (e.g. strings), then a boolean Index would raise a ``KeyError``.
This will now be treated as a boolean indexer.
Previously Behavior:
.. ipython:: python
s = pd.Series([1,2,3], index=['a', 'b', 'c'])
s
.. code-block:: ipython
In [39]: s.loc[pd.Index([True, False, True])]
KeyError: "None of [Index([True, False, True], dtype='object')] are in the [index]"
Current Behavior
.. ipython:: python
s.loc[pd.Index([True, False, True])]
.. _whatsnew_0210.api_breaking.bottleneck:
Sum/Prod of all-NaN Series/DataFrames is now consistently NaN
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The behavior of ``sum`` and ``prod`` on all-NaN Series/DataFrames no longer depends on
whether `bottleneck <http://berkeleyanalytics.com/bottleneck>`__ is installed. (:issue:`9422`, :issue:`15507`).
Calling ``sum`` or ``prod`` on an empty or all-``NaN`` ``Series``, or columns of a ``DataFrame``, will result in ``NaN``. See the :ref:`docs <missing_data.numeric_sum>`.
.. ipython:: python
s = Series([np.nan])
Previously NO ``bottleneck``
.. code-block:: ipython
In [2]: s.sum()
Out[2]: np.nan
Previously WITH ``bottleneck``
.. code-block:: ipython
In [2]: s.sum()
Out[2]: 0.0
New Behavior, without regard to the bottleneck installation.
.. ipython:: python
s.sum()
Note that this also changes the sum of an empty ``Series``
Previously regardless of ``bottlenck``
.. code-block:: ipython
In [1]: pd.Series([]).sum()
Out[1]: 0
.. ipython:: python
pd.Series([]).sum()
.. _whatsnew_0210.api_breaking.pandas_eval:
Improved error handling during item assignment in pd.eval
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`eval` will now raise a ``ValueError`` when item assignment malfunctions, or
inplace operations are specified, but there is no item assignment in the expression (:issue:`16732`)
.. ipython:: python
arr = np.array([1, 2, 3])
Previously, if you attempted the following expression, you would get a not very helpful error message:
.. code-block:: ipython
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`)
and integer or boolean arrays are valid indices
This is a very long way of saying numpy arrays don't support string-item indexing. With this
change, the error message is now this:
.. code-block:: python
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
ValueError: Cannot assign expression output to target
It also used to be possible to evaluate expressions inplace, even if there was no item assignment:
.. code-block:: ipython
In [4]: pd.eval("1 + 2", target=arr, inplace=True)
Out[4]: 3
However, this input does not make much sense because the output is not being assigned to
the target. Now, a ``ValueError`` will be raised when such an input is passed in:
.. code-block:: ipython
In [4]: pd.eval("1 + 2", target=arr, inplace=True)
...
ValueError: Cannot operate inplace if there is no assignment
.. _whatsnew_0210.api_breaking.iteration_scalars:
Iteration of Series/Index will now return Python scalars
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, when using certain iteration methods for a ``Series`` with dtype ``int`` or ``float``, you would receive a ``numpy`` scalar, e.g. a ``np.int64``, rather than a Python ``int``. Issue (:issue:`10904`) corrected this for ``Series.tolist()`` and ``list(Series)``. This change makes all iteration methods consistent, in particular, for ``__iter__()`` and ``.map()``; note that this only affects int/float dtypes. (:issue:`13236`, :issue:`13258`, :issue:`14216`).
.. ipython:: python
s = pd.Series([1, 2, 3])
s
Previously:
.. code-block:: ipython
In [2]: type(list(s)[0])
Out[2]: numpy.int64
New Behaviour:
.. ipython:: python
type(list(s)[0])
Furthermore this will now correctly box the results of iteration for :func:`DataFrame.to_dict` as well.
.. ipython:: python
d = {'a':[1], 'b':['b']}
df = pd.DataFrame(d)
Previously:
.. code-block:: ipython
In [8]: type(df.to_dict()['a'][0])
Out[8]: numpy.int64
New Behaviour:
.. ipython:: python
type(df.to_dict()['a'][0])
.. _whatsnew_0210.api_breaking.dtype_conversions:
Dtype Conversions
^^^^^^^^^^^^^^^^^
Previously assignments, ``.where()`` and ``.fillna()`` with a ``bool`` assignment, would coerce to same the type (e.g. int / float), or raise for datetimelikes. These will now preserve the bools with ``object`` dtypes. (:issue:`16821`).
.. ipython:: python
s = Series([1, 2, 3])
.. code-block:: python
In [5]: s[1] = True
In [6]: s
Out[6]:
0 1
1 1
2 3
dtype: int64
New Behavior
.. ipython:: python
s[1] = True
s
Previously, as assignment to a datetimelike with a non-datetimelike would coerce the
non-datetime-like item being assigned (:issue:`14145`).
.. ipython:: python
s = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01')])
.. code-block:: python
In [1]: s[1] = 1
In [2]: s
Out[2]:
0 2011-01-01 00:00:00.000000000
1 1970-01-01 00:00:00.000000001
dtype: datetime64[ns]
These now coerce to ``object`` dtype.
.. ipython:: python
s[1] = 1
s
- Inconsistent behavior in ``.where()`` with datetimelikes which would raise rather than coerce to ``object`` (:issue:`16402`)
- Bug in assignment against ``int64`` data with ``np.ndarray`` with ``float64`` dtype may keep ``int64`` dtype (:issue:`14001`)
.. _whatsnew_0210.api.na_changes:
NA naming Changes
^^^^^^^^^^^^^^^^^
In order to promote more consistency among the pandas API, we have added additional top-level
functions :func:`isna` and :func:`notna` that are aliases for :func:`isnull` and :func:`notnull`.
The naming scheme is now more consistent with methods like ``.dropna()`` and ``.fillna()``. Furthermore
in all cases where ``.isnull()`` and ``.notnull()`` methods are defined, these have additional methods
named ``.isna()`` and ``.notna()``, these are included for classes ``Categorical``,
``Index``, ``Series``, and ``DataFrame``. (:issue:`15001`).
The configuration option ``pd.options.mode.use_inf_as_null`` is deprecated, and ``pd.options.mode.use_inf_as_na`` is added as a replacement.
.. _whatsnew_210.api.multiindex_single:
MultiIndex Constructor with a Single Level
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``MultiIndex`` constructors no longer squeezes a MultiIndex with all
length-one levels down to a regular ``Index``. This affects all the
``MultiIndex`` constructors. (:issue:`17178`)
Previous behavior:
.. code-block:: ipython
In [2]: pd.MultiIndex.from_tuples([('a',), ('b',)])
Out[2]: Index(['a', 'b'], dtype='object')
Length 1 levels are no longer special-cased. They behave exactly as if you had
length 2+ levels, so a :class:`MultiIndex` is always returned from all of the
``MultiIndex`` constructors:
.. ipython:: python
pd.MultiIndex.from_tuples([('a',), ('b',)])
.. _whatsnew_0210.api.utc_localization_with_series:
UTC Localization with Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, :func:`to_datetime` did not localize datetime ``Series`` data when ``utc=True`` was passed. Now, :func:`to_datetime` will correctly localize ``Series`` with a ``datetime64[ns, UTC]`` dtype to be consistent with how list-like and ``Index`` data are handled. (:issue:`6415`).
Previous Behavior
.. ipython:: python
s = Series(['20130101 00:00:00'] * 3)
.. code-block:: ipython
In [12]: pd.to_datetime(s, utc=True)
Out[12]:
0 2013-01-01
1 2013-01-01
2 2013-01-01
dtype: datetime64[ns]
New Behavior
.. ipython:: python
pd.to_datetime(s, utc=True)
Additionally, DataFrames with datetime columns that were parsed by :func:`read_sql_table` and :func:`read_sql_query` will also be localized to UTC only if the original SQL columns were timezone aware datetime columns.
.. _whatsnew_0210.api.consistency_of_range_functions:
Consistency of Range Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions, there were some inconsistencies between the various range functions: :func:`date_range`, :func:`bdate_range`, :func:`period_range`, :func:`timedelta_range`, and :func:`interval_range`. (:issue:`17471`).
One of the inconsistent behaviors occurred when the ``start``, ``end`` and ``period`` parameters were all specified, potentially leading to ambiguous ranges. When all three parameters were passed, ``interval_range`` ignored the ``period`` parameter, ``period_range`` ignored the ``end`` parameter, and the other range functions raised. To promote consistency among the range functions, and avoid potentially ambiguous ranges, ``interval_range`` and ``period_range`` will now raise when all three parameters are passed.
Previous Behavior:
.. code-block:: ipython
In [2]: pd.interval_range(start=0, end=4, periods=6)
Out[2]:
IntervalIndex([(0, 1], (1, 2], (2, 3]]
closed='right',
dtype='interval[int64]')
In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')
Out[3]: PeriodIndex(['2017Q1', '2017Q2', '2017Q3', '2017Q4', '2018Q1', '2018Q2'], dtype='period[Q-DEC]', freq='Q-DEC')
New Behavior:
.. code-block:: ipython
In [2]: pd.interval_range(start=0, end=4, periods=6)
---------------------------------------------------------------------------
ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')
---------------------------------------------------------------------------
ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
Additionally, the endpoint parameter ``end`` was not included in the intervals produced by ``interval_range``. However, all other range functions include ``end`` in their output. To promote consistency among the range functions, ``interval_range`` will now include ``end`` as the right endpoint of the final interval, except if ``freq`` is specified in a way which skips ``end``.
Previous Behavior:
.. code-block:: ipython
In [4]: pd.interval_range(start=0, end=4)
Out[4]:
IntervalIndex([(0, 1], (1, 2], (2, 3]]
closed='right',
dtype='interval[int64]')
New Behavior:
.. ipython:: python
pd.interval_range(start=0, end=4)
.. _whatsnew_0210.api:
Other API Changes
^^^^^^^^^^^^^^^^^
- Support has been dropped for Python 3.4 (:issue:`15251`)
- The Categorical constructor no longer accepts a scalar for the ``categories`` keyword. (:issue:`16022`)
- Accessing a non-existent attribute on a closed :class:`~pandas.HDFStore` will now
raise an ``AttributeError`` rather than a ``ClosedFileError`` (:issue:`16301`)
- :func:`read_csv` now issues a ``UserWarning`` if the ``names`` parameter contains duplicates (:issue:`17095`)
- :func:`read_csv` now treats ``'null'`` strings as missing values by default (:issue:`16471`)
- :func:`read_csv` now treats ``'n/a'`` strings as missing values by default (:issue:`16078`)
- :class:`pandas.HDFStore`'s string representation is now faster and less detailed. For the previous behavior, use ``pandas.HDFStore.info()``. (:issue:`16503`).
- Compression defaults in HDF stores now follow pytables standards. Default is no compression and if ``complib`` is missing and ``complevel`` > 0 ``zlib`` is used (:issue:`15943`)
- ``Index.get_indexer_non_unique()`` now returns a ndarray indexer rather than an ``Index``; this is consistent with ``Index.get_indexer()`` (:issue:`16819`)
- Removed the ``@slow`` decorator from ``pandas.util.testing``, which caused issues for some downstream packages' test suites. Use ``@pytest.mark.slow`` instead, which achieves the same thing (:issue:`16850`)
- Moved definition of ``MergeError`` to the ``pandas.errors`` module.
- The signature of :func:`Series.set_axis` and :func:`DataFrame.set_axis` has been changed from ``set_axis(axis, labels)`` to ``set_axis(labels, axis=0)``, for consistency with the rest of the API. The old signature is deprecated and will show a ``FutureWarning`` (:issue:`14636`)
- :func:`Series.argmin` and :func:`Series.argmax` will now raise a ``TypeError`` when used with ``object`` dtypes, instead of a ``ValueError`` (:issue:`13595`)
- :class:`Period` is now immutable, and will now raise an ``AttributeError`` when a user tries to assign a new value to the ``ordinal`` or ``freq`` attributes (:issue:`17116`).
- :func:`to_datetime` when passed a tz-aware ``origin=`` kwarg will now raise a more informative ``ValueError`` rather than a ``TypeError`` (:issue:`16842`)
- :func:`to_datetime` now raises a ``ValueError`` when format includes ``%W`` or ``%U`` without also including day of the week and calendar year (:issue:`16774`)
- Renamed non-functional ``index`` to ``index_col`` in :func:`read_stata` to improve API consistency (:issue:`16342`)
- Bug in :func:`DataFrame.drop` caused boolean labels ``False`` and ``True`` to be treated as labels 0 and 1 respectively when dropping indices from a numeric index. This will now raise a ValueError (:issue:`16877`)
- Restricted DateOffset keyword arguments. Previously, ``DateOffset`` subclasses allowed arbitrary keyword arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (:issue:`17176`).
- Pandas no longer registers matplotlib converters on import. The converters
will be registered and used when the first plot is draw (:issue:`17710`)
.. _whatsnew_0210.deprecations:
Deprecations
~~~~~~~~~~~~
- :meth:`DataFrame.from_csv` and :meth:`Series.from_csv` have been deprecated in favor of :func:`read_csv()` (:issue:`4191`)
- :func:`read_excel()` has deprecated ``sheetname`` in favor of ``sheet_name`` for consistency with ``.to_excel()`` (:issue:`10559`).
- :func:`read_excel()` has deprecated ``parse_cols`` in favor of ``usecols`` for consistency with :func:`read_csv` (:issue:`4988`)
- :func:`read_csv()` has deprecated the ``tupleize_cols`` argument. Column tuples will always be converted to a ``MultiIndex`` (:issue:`17060`)
- :meth:`DataFrame.to_csv` has deprecated the ``tupleize_cols`` argument. Multi-index columns will be always written as rows in the CSV file (:issue:`17060`)
- The ``convert`` parameter has been deprecated in the ``.take()`` method, as it was not being respected (:issue:`16948`)
- ``pd.options.html.border`` has been deprecated in favor of ``pd.options.display.html.border`` (:issue:`15793`).
- :func:`SeriesGroupBy.nth` has deprecated ``True`` in favor of ``'all'`` for its kwarg ``dropna`` (:issue:`11038`).
- :func:`DataFrame.as_blocks` is deprecated, as this is exposing the internal implementation (:issue:`17302`)
- ``pd.TimeGrouper`` is deprecated in favor of :class:`pandas.Grouper` (:issue:`16747`)
- ``cdate_range`` has been deprecated in favor of :func:`bdate_range`, which has gained ``weekmask`` and ``holidays`` parameters for building custom frequency date ranges. See the :ref:`documentation <timeseries.custom-freq-ranges>` for more details (:issue:`17596`)
- passing ``categories`` or ``ordered`` kwargs to :func:`Series.astype` is deprecated, in favor of passing a :ref:`CategoricalDtype <whatsnew_0210.enhancements.categorical_dtype>` (:issue:`17636`)
- ``.get_value`` and ``.set_value`` on ``Series``, ``DataFrame``, ``Panel``, ``SparseSeries``, and ``SparseDataFrame`` are deprecated in favor of using ``.iat[]`` or ``.at[]`` accessors (:issue:`15269`)
- Passing a non-existent column in ``.to_excel(..., columns=)`` is deprecated and will raise a ``KeyError`` in the future (:issue:`17295`)
- ``raise_on_error`` parameter to :func:`Series.where`, :func:`Series.mask`, :func:`DataFrame.where`, :func:`DataFrame.mask` is deprecated, in favor of ``errors=`` (:issue:`14968`)
- Using :meth:`DataFrame.rename_axis` and :meth:`Series.rename_axis` to alter index or column *labels* is now deprecated in favor of using ``.rename``. ``rename_axis`` may still be used to alter the name of the index or columns (:issue:`17833`).
- :meth:`~DataFrame.reindex_axis` has been deprecated in favor of :meth:`~DataFrame.reindex`. See :ref`here` <whatsnew_0210.enhancements.rename_reindex_axis> for more (:issue:`17833`).
.. _whatsnew_0210.deprecations.select:
Series.select and DataFrame.select
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`Series.select` and :meth:`DataFrame.select` methods are deprecated in favor of using ``df.loc[labels.map(crit)]`` (:issue:`12401`)
.. ipython:: python
df = DataFrame({'A': [1, 2, 3]}, index=['foo', 'bar', 'baz'])
.. code-block:: ipython
In [3]: df.select(lambda x: x in ['bar', 'baz'])
FutureWarning: select is deprecated and will be removed in a future release. You can use .loc[crit] as a replacement
Out[3]:
A
bar 2
baz 3
.. ipython:: python
df.loc[df.index.map(lambda x: x in ['bar', 'baz'])]
.. _whatsnew_0210.deprecations.argmin_min:
Series.argmax and Series.argmin
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- The behavior of :func:`Series.argmax` has been deprecated in favor of :func:`Series.idxmax` (:issue:`16830`)
- The behavior of :func:`Series.argmin` has been deprecated in favor of :func:`Series.idxmin` (:issue:`16830`)
For compatibility with NumPy arrays, ``pd.Series`` implements ``argmax`` and
``argmin``. Since pandas 0.13.0, ``argmax`` has been an alias for
:meth:`pandas.Series.idxmax`, and ``argmin`` has been an alias for
:meth:`pandas.Series.idxmin`. They return the *label* of the maximum or minimum,
rather than the *position*.
We've deprecated the current behavior of ``Series.argmax`` and
``Series.argmin``. Using either of these will emit a ``FutureWarning``. Use
:meth:`Series.idxmax` if you want the label of the maximum. Use
``Series.values.argmax()`` if you want the position of the maximum. Likewise for
the minimum. In a future release ``Series.argmax`` and ``Series.argmin`` will
return the position of the maximum or minimum.
.. _whatsnew_0210.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- :func:`read_excel()` has dropped the ``has_index_names`` parameter (:issue:`10967`)
- The ``pd.options.display.height`` configuration has been dropped (:issue:`3663`)
- The ``pd.options.display.line_width`` configuration has been dropped (:issue:`2881`)
- The ``pd.options.display.mpl_style`` configuration has been dropped (:issue:`12190`)
- ``Index`` has dropped the ``.sym_diff()`` method in favor of ``.symmetric_difference()`` (:issue:`12591`)
- ``Categorical`` has dropped the ``.order()`` and ``.sort()`` methods in favor of ``.sort_values()`` (:issue:`12882`)
- :func:`eval` and :func:`DataFrame.eval` have changed the default of ``inplace`` from ``None`` to ``False`` (:issue:`11149`)
- The function ``get_offset_name`` has been dropped in favor of the ``.freqstr`` attribute for an offset (:issue:`11834`)
- pandas no longer tests for compatibility with hdf5-files created with pandas < 0.11 (:issue:`17404`).
.. _whatsnew_0210.performance:
Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of instantiating :class:`SparseDataFrame` (:issue:`16773`)
- :attr:`Series.dt` no longer performs frequency inference, yielding a large speedup when accessing the attribute (:issue:`17210`)
- Improved performance of :meth:`Categorical.set_categories` by not materializing the values (:issue:`17508`)
- :attr:`Timestamp.microsecond` no longer re-computes on attribute access (:issue:`17331`)
- Improved performance of the :class:`CategoricalIndex` for data that is already categorical dtype (:issue:`17513`)
- Improved performance of :meth:`RangeIndex.min` and :meth:`RangeIndex.max` by using ``RangeIndex`` properties to perform the computations (:issue:`17607`)
.. _whatsnew_0210.docs:
Documentation Changes
~~~~~~~~~~~~~~~~~~~~~
- Several ``NaT`` method docstrings (e.g. :func:`NaT.ctime`) were incorrect (:issue:`17327`)
- The documentation has had references to versions < v0.17 removed and cleaned up (:issue:`17442`, :issue:`17442`, :issue:`17404` & :issue:`17504`)
.. _whatsnew_0210.bug_fixes:
Bug Fixes
~~~~~~~~~
Conversion
^^^^^^^^^^
- Bug in assignment against datetime-like data with ``int`` may incorrectly convert to datetime-like (:issue:`14145`)
- Bug in assignment against ``int64`` data with ``np.ndarray`` with ``float64`` dtype may keep ``int64`` dtype (:issue:`14001`)
- Fixed the return type of ``IntervalIndex.is_non_overlapping_monotonic`` to be a Python ``bool`` for consistency with similar attributes/methods. Previously returned a ``numpy.bool_``. (:issue:`17237`)
- Bug in ``IntervalIndex.is_non_overlapping_monotonic`` when intervals are closed on both sides and overlap at a point (:issue:`16560`)
- Bug in :func:`Series.fillna` returns frame when ``inplace=True`` and ``value`` is dict (:issue:`16156`)
- Bug in :attr:`Timestamp.weekday_name` returning a UTC-based weekday name when localized to a timezone (:issue:`17354`)
- Bug in ``Timestamp.replace`` when replacing ``tzinfo`` around DST changes (:issue:`15683`)
- Bug in ``Timedelta`` construction and arithmetic that would not propagate the ``Overflow`` exception (:issue:`17367`)
- Bug in :meth:`~DataFrame.astype` converting to object dtype when passed extension type classes (`DatetimeTZDtype``, ``CategoricalDtype``) rather than instances. Now a ``TypeError`` is raised when a class is passed (:issue:`17780`).
- Bug in :meth:`to_numeric` in which elements were not always being coerced to numeric when ``errors='coerce'`` (:issue:`17007`, :issue:`17125`)
- Bug in ``DataFrame`` and ``Series`` constructors where ``range`` objects are converted to ``int32`` dtype on Windows instead of ``int64`` (:issue:`16804`)
Indexing
^^^^^^^^
- When called with a null slice (e.g. ``df.iloc[:]``), the ``.iloc`` and ``.loc`` indexers return a shallow copy of the original object. Previously they returned the original object. (:issue:`13873`).
- When called on an unsorted ``MultiIndex``, the ``loc`` indexer now will raise ``UnsortedIndexError`` only if proper slicing is used on non-sorted levels (:issue:`16734`).
- Fixes regression in 0.20.3 when indexing with a string on a ``TimedeltaIndex`` (:issue:`16896`).
- Fixed :func:`TimedeltaIndex.get_loc` handling of ``np.timedelta64`` inputs (:issue:`16909`).
- Fix :func:`MultiIndex.sort_index` ordering when ``ascending`` argument is a list, but not all levels are specified, or are in a different order (:issue:`16934`).
- Fixes bug where indexing with ``np.inf`` caused an ``OverflowError`` to be raised (:issue:`16957`)
- Bug in reindexing on an empty ``CategoricalIndex`` (:issue:`16770`)
- Fixes ``DataFrame.loc`` for setting with alignment and tz-aware ``DatetimeIndex`` (:issue:`16889`)
- Avoids ``IndexError`` when passing an Index or Series to ``.iloc`` with older numpy (:issue:`17193`)