forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathv0.22.0.txt
220 lines (146 loc) · 5.68 KB
/
v0.22.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
.. _whatsnew_0220:
v0.22.0
-------
This is a major release from 0.21.1 and includes a single, API-breaking change.
We recommend that all users upgrade to this version after carefully reading the
release note (singular!).
.. _whatsnew_0220.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pandas 0.22.0 changes the handling of empty and all-*NA* sums and products. The
summary is that
* The sum of an empty or all-*NA* ``Series`` is now ``0``
* The product of an empty or all-*NA* ``Series`` is now ``1``
* We've added a ``min_count`` parameter to ``.sum()`` and ``.prod()`` controlling
the minimum number of valid values for the result to be valid. If fewer than
``min_count`` non-*NA* values are present, the result is *NA*. The default is
``0``. To return ``NaN``, the 0.21 behavior, use ``min_count=1``.
Some background: In pandas 0.21, we fixed a long-standing inconsistency
in the return value of all-*NA* series depending on whether or not bottleneck
was installed. See :ref:`whatsnew_0210.api_breaking.bottleneck`. At the same
time, we changed the sum and prod of an empty ``Series`` to also be ``NaN``.
Based on feedback, we've partially reverted those changes.
Arithmetic Operations
^^^^^^^^^^^^^^^^^^^^^
The default sum for empty or all-*NA* ``Series`` is now ``0``.
*pandas 0.21.x*
.. code-block:: ipython
In [1]: pd.Series([]).sum()
Out[1]: nan
In [2]: pd.Series([np.nan]).sum()
Out[2]: nan
*pandas 0.22.0*
.. ipython:: python
pd.Series([]).sum()
pd.Series([np.nan]).sum()
The default behavior is the same as pandas 0.20.3 with bottleneck installed. It
also matches the behavior of NumPy's ``np.nansum`` on empty and all-*NA* arrays.
To have the sum of an empty series return ``NaN`` (the default behavior of
pandas 0.20.3 without bottleneck, or pandas 0.21.x), use the ``min_count``
keyword.
.. ipython:: python
pd.Series([]).sum(min_count=1)
Thanks to the ``skipna`` parameter, the ``.sum`` on an all-*NA*
series is conceptually the same as the ``.sum`` of an empty one with
``skipna=True`` (the default).
.. ipython:: python
pd.Series([np.nan]).sum(min_count=1) # skipna=True by default
The ``min_count`` parameter refers to the minimum number of *non-null* values
required for a non-NA sum or product.
:meth:`Series.prod` has been updated to behave the same as :meth:`Series.sum`,
returning ``1`` instead.
.. ipython:: python
pd.Series([]).prod()
pd.Series([np.nan]).prod()
pd.Series([]).prod(min_count=1)
These changes affect :meth:`DataFrame.sum` and :meth:`DataFrame.prod` as well.
Finally, a few less obvious places in pandas are affected by this change.
Grouping by a Categorical
^^^^^^^^^^^^^^^^^^^^^^^^^
Grouping by a ``Categorical`` and summing now returns ``0`` instead of
``NaN`` for categories with no observations. The product now returns ``1``
instead of ``NaN``.
*pandas 0.21.x*
.. code-block:: ipython
In [8]: grouper = pd.Categorical(['a', 'a'], categories=['a', 'b'])
In [9]: pd.Series([1, 2]).groupby(grouper).sum()
Out[9]:
a 3.0
b NaN
dtype: float64
*pandas 0.22*
.. ipython:: python
grouper = pd.Categorical(['a', 'a'], categories=['a', 'b'])
pd.Series([1, 2]).groupby(grouper).sum()
To restore the 0.21 behavior of returning ``NaN`` for unobserved groups,
use ``min_count>=1``.
.. ipython:: python
pd.Series([1, 2]).groupby(grouper).sum(min_count=1)
Resample
^^^^^^^^
The sum and product of all-*NA* bins has changed from ``NaN`` to ``0`` for
sum and ``1`` for product.
*pandas 0.21.x*
.. code-block:: ipython
In [11]: s = pd.Series([1, 1, np.nan, np.nan],
...: index=pd.date_range('2017', periods=4))
...: s
Out[11]:
2017-01-01 1.0
2017-01-02 1.0
2017-01-03 NaN
2017-01-04 NaN
Freq: D, dtype: float64
In [12]: s.resample('2d').sum()
Out[12]:
2017-01-01 2.0
2017-01-03 NaN
Freq: 2D, dtype: float64
*pandas 0.22.0*
.. ipython:: python
s = pd.Series([1, 1, np.nan, np.nan],
index=pd.date_range('2017', periods=4))
s.resample('2d').sum()
To restore the 0.21 behavior of returning ``NaN``, use ``min_count>=1``.
.. ipython:: python
s.resample('2d').sum(min_count=1)
In particular, upsampling and taking the sum or product is affected, as
upsampling introduces missing values even if the original series was
entirely valid.
*pandas 0.21.x*
.. code-block:: ipython
In [14]: idx = pd.DatetimeIndex(['2017-01-01', '2017-01-02'])
In [15]: pd.Series([1, 2], index=idx).resample('12H').sum()
Out[15]:
2017-01-01 00:00:00 1.0
2017-01-01 12:00:00 NaN
2017-01-02 00:00:00 2.0
Freq: 12H, dtype: float64
*pandas 0.22.0*
.. ipython:: python
idx = pd.DatetimeIndex(['2017-01-01', '2017-01-02'])
pd.Series([1, 2], index=idx).resample("12H").sum()
Once again, the ``min_count`` keyword is available to restore the 0.21 behavior.
.. ipython:: python
pd.Series([1, 2], index=idx).resample("12H").sum(min_count=1)
Rolling and Expanding
^^^^^^^^^^^^^^^^^^^^^
Rolling and expanding already have a ``min_periods`` keyword that behaves
similar to ``min_count``. The only case that changes is when doing a rolling
or expanding sum with ``min_periods=0``. Previously this returned ``NaN``,
when fewer than ``min_periods`` non-*NA* values were in the window. Now it
returns ``0``.
*pandas 0.21.1*
.. code-block:: ipython
In [17]: s = pd.Series([np.nan, np.nan])
In [18]: s.rolling(2, min_periods=0).sum()
Out[18]:
0 NaN
1 NaN
dtype: float64
*pandas 0.22.0*
.. ipython:: python
s = pd.Series([np.nan, np.nan])
s.rolling(2, min_periods=0).sum()
The default behavior of ``min_periods=None``, implying that ``min_periods``
equals the window size, is unchanged.