forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patharray.py
100 lines (75 loc) · 2.52 KB
/
array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import decimal
import numbers
import random
import sys
import numpy as np
import pandas as pd
from pandas.core.arrays import ExtensionArray
from pandas.core.dtypes.base import ExtensionDtype
from pandas.core.dtypes.common import _ensure_platform_int
class DecimalDtype(ExtensionDtype):
type = decimal.Decimal
name = 'decimal'
@classmethod
def construct_from_string(cls, string):
if string == cls.name:
return cls()
else:
raise TypeError("Cannot construct a '{}' from "
"'{}'".format(cls, string))
class DecimalArray(ExtensionArray):
dtype = DecimalDtype()
def __init__(self, values):
values = np.asarray(values, dtype=object)
self.values = values
# Some aliases for common attribute names to ensure pandas supports
# these
self._items = self._data = self.data = self.values
@classmethod
def _constructor_from_sequence(cls, scalars):
return cls(scalars)
@classmethod
def _from_factorized(cls, values, original):
return cls(values)
def __getitem__(self, item):
if isinstance(item, numbers.Integral):
return self.values[item]
else:
return type(self)(self.values[item])
def copy(self, deep=False):
if deep:
return type(self)(self.values.copy())
return type(self)(self)
def __setitem__(self, key, value):
if pd.api.types.is_list_like(value):
value = [decimal.Decimal(v) for v in value]
else:
value = decimal.Decimal(value)
self.values[key] = value
def __len__(self):
return len(self.values)
def __repr__(self):
return 'DecimalArray({!r})'.format(self.values)
@property
def nbytes(self):
n = len(self)
if n:
return n * sys.getsizeof(self[0])
return 0
def isna(self):
return np.array([x.is_nan() for x in self.values])
def take(self, indexer, allow_fill=True, fill_value=None):
indexer = np.asarray(indexer)
mask = indexer == -1
indexer = _ensure_platform_int(indexer)
out = self.values.take(indexer)
out[mask] = self._na_value
return type(self)(out)
@property
def _na_value(self):
return decimal.Decimal('NaN')
@classmethod
def _concat_same_type(cls, to_concat):
return cls(np.concatenate([x.values for x in to_concat]))
def make_data():
return [decimal.Decimal(random.random()) for _ in range(100)]