forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_json.py
267 lines (192 loc) · 8.04 KB
/
test_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import operator
import collections
import pytest
import pandas as pd
import pandas.util.testing as tm
from pandas.compat import PY2, PY36
from pandas.tests.extension import base
from .array import JSONArray, JSONDtype, make_data
pytestmark = pytest.mark.skipif(PY2, reason="Py2 doesn't have a UserDict")
@pytest.fixture
def dtype():
return JSONDtype()
@pytest.fixture
def data():
"""Length-100 PeriodArray for semantics test."""
data = make_data()
# Why the while loop? NumPy is unable to construct an ndarray from
# equal-length ndarrays. Many of our operations involve coercing the
# EA to an ndarray of objects. To avoid random test failures, we ensure
# that our data is coercable to an ndarray. Several tests deal with only
# the first two elements, so that's what we'll check.
while len(data[0]) == len(data[1]):
data = make_data()
return JSONArray(data)
@pytest.fixture
def data_missing():
"""Length 2 array with [NA, Valid]"""
return JSONArray([{}, {'a': 10}])
@pytest.fixture
def data_for_sorting():
return JSONArray([{'b': 1}, {'c': 4}, {'a': 2, 'c': 3}])
@pytest.fixture
def data_missing_for_sorting():
return JSONArray([{'b': 1}, {}, {'a': 4}])
@pytest.fixture
def na_value(dtype):
return dtype.na_value
@pytest.fixture
def na_cmp():
return operator.eq
@pytest.fixture
def data_for_grouping():
return JSONArray([
{'b': 1}, {'b': 1},
{}, {},
{'a': 0, 'c': 2}, {'a': 0, 'c': 2},
{'b': 1},
{'c': 2},
])
class BaseJSON(object):
# NumPy doesn't handle an array of equal-length UserDicts.
# The default assert_series_equal eventually does a
# Series.values, which raises. We work around it by
# converting the UserDicts to dicts.
def assert_series_equal(self, left, right, **kwargs):
if left.dtype.name == 'json':
assert left.dtype == right.dtype
left = pd.Series(JSONArray(left.values.astype(object)),
index=left.index, name=left.name)
right = pd.Series(JSONArray(right.values.astype(object)),
index=right.index, name=right.name)
tm.assert_series_equal(left, right, **kwargs)
def assert_frame_equal(self, left, right, *args, **kwargs):
tm.assert_index_equal(
left.columns, right.columns,
exact=kwargs.get('check_column_type', 'equiv'),
check_names=kwargs.get('check_names', True),
check_exact=kwargs.get('check_exact', False),
check_categorical=kwargs.get('check_categorical', True),
obj='{obj}.columns'.format(obj=kwargs.get('obj', 'DataFrame')))
jsons = (left.dtypes == 'json').index
for col in jsons:
self.assert_series_equal(left[col], right[col],
*args, **kwargs)
left = left.drop(columns=jsons)
right = right.drop(columns=jsons)
tm.assert_frame_equal(left, right, *args, **kwargs)
class TestDtype(BaseJSON, base.BaseDtypeTests):
pass
class TestInterface(BaseJSON, base.BaseInterfaceTests):
def test_custom_asserts(self):
# This would always trigger the KeyError from trying to put
# an array of equal-length UserDicts inside an ndarray.
data = JSONArray([collections.UserDict({'a': 1}),
collections.UserDict({'b': 2}),
collections.UserDict({'c': 3})])
a = pd.Series(data)
self.assert_series_equal(a, a)
self.assert_frame_equal(a.to_frame(), a.to_frame())
b = pd.Series(data.take([0, 0, 1]))
with pytest.raises(AssertionError):
self.assert_series_equal(a, b)
with pytest.raises(AssertionError):
self.assert_frame_equal(a.to_frame(), b.to_frame())
class TestConstructors(BaseJSON, base.BaseConstructorsTests):
@pytest.mark.skip(reason="not implemented constructor from dtype")
def test_from_dtype(self, data):
# construct from our dtype & string dtype
pass
class TestReshaping(BaseJSON, base.BaseReshapingTests):
pass
class TestGetitem(BaseJSON, base.BaseGetitemTests):
pass
class TestMissing(BaseJSON, base.BaseMissingTests):
@pytest.mark.skip(reason="Setting a dict as a scalar")
def test_fillna_series(self):
"""We treat dictionaries as a mapping in fillna, not a scalar."""
@pytest.mark.skip(reason="Setting a dict as a scalar")
def test_fillna_frame(self):
"""We treat dictionaries as a mapping in fillna, not a scalar."""
unhashable = pytest.mark.skip(reason="Unhashable")
unstable = pytest.mark.skipif(not PY36, # 3.6 or higher
reason="Dictionary order unstable")
class TestMethods(BaseJSON, base.BaseMethodsTests):
@unhashable
def test_value_counts(self, all_data, dropna):
pass
@unhashable
def test_sort_values_frame(self):
# TODO (EA.factorize): see if _values_for_factorize allows this.
pass
@unstable
def test_argsort(self, data_for_sorting):
super(TestMethods, self).test_argsort(data_for_sorting)
@unstable
def test_argsort_missing(self, data_missing_for_sorting):
super(TestMethods, self).test_argsort_missing(
data_missing_for_sorting)
@unstable
@pytest.mark.parametrize('ascending', [True, False])
def test_sort_values(self, data_for_sorting, ascending):
super(TestMethods, self).test_sort_values(
data_for_sorting, ascending)
@unstable
@pytest.mark.parametrize('ascending', [True, False])
def test_sort_values_missing(self, data_missing_for_sorting, ascending):
super(TestMethods, self).test_sort_values_missing(
data_missing_for_sorting, ascending)
@pytest.mark.skip(reason="combine for JSONArray not supported")
def test_combine_le(self, data_repeated):
pass
@pytest.mark.skip(reason="combine for JSONArray not supported")
def test_combine_add(self, data_repeated):
pass
@unhashable
def test_hash_pandas_object_works(self, data, kind):
super().test_hash_pandas_object_works(data, kind)
class TestCasting(BaseJSON, base.BaseCastingTests):
@pytest.mark.skip(reason="failing on np.array(self, dtype=str)")
def test_astype_str(self):
"""This currently fails in NumPy on np.array(self, dtype=str) with
*** ValueError: setting an array element with a sequence
"""
# We intentionally don't run base.BaseSetitemTests because pandas'
# internals has trouble setting sequences of values into scalar positions.
class TestGroupby(BaseJSON, base.BaseGroupbyTests):
@unhashable
def test_groupby_extension_transform(self):
"""
This currently fails in Series.name.setter, since the
name must be hashable, but the value is a dictionary.
I think this is what we want, i.e. `.name` should be the original
values, and not the values for factorization.
"""
@unhashable
def test_groupby_extension_apply(self):
"""
This fails in Index._do_unique_check with
> hash(val)
E TypeError: unhashable type: 'UserDict' with
I suspect that once we support Index[ExtensionArray],
we'll be able to dispatch unique.
"""
@unstable
@pytest.mark.parametrize('as_index', [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
super(TestGroupby, self).test_groupby_extension_agg(
as_index, data_for_grouping
)
class TestArithmeticOps(BaseJSON, base.BaseArithmeticOpsTests):
def test_error(self, data, all_arithmetic_operators):
pass
def test_add_series_with_extension_array(self, data):
ser = pd.Series(data)
with tm.assert_raises_regex(TypeError, "unsupported"):
ser + data
def _check_divmod_op(self, s, op, other, exc=NotImplementedError):
return super(TestArithmeticOps, self)._check_divmod_op(
s, op, other, exc=TypeError
)
class TestComparisonOps(BaseJSON, base.BaseComparisonOpsTests):
pass