forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathextending.rst
268 lines (193 loc) · 9.15 KB
/
extending.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
.. _extending:
****************
Extending Pandas
****************
While pandas provides a rich set of methods, containers, and data types, your
needs may not be fully satisfied. Pandas offers a few options for extending
pandas.
.. _extending.register-accessors:
Registering Custom Accessors
----------------------------
Libraries can use the decorators
:func:`pandas.api.extensions.register_dataframe_accessor`,
:func:`pandas.api.extensions.register_series_accessor`, and
:func:`pandas.api.extensions.register_index_accessor`, to add additional
"namespaces" to pandas objects. All of these follow a similar convention: you
decorate a class, providing the name of attribute to add. The class's
``__init__`` method gets the object being decorated. For example:
.. code-block:: python
@pd.api.extensions.register_dataframe_accessor("geo")
class GeoAccessor(object):
def __init__(self, pandas_obj):
self._obj = pandas_obj
@property
def center(self):
# return the geographic center point of this DataFrame
lat = self._obj.latitude
lon = self._obj.longitude
return (float(lon.mean()), float(lat.mean()))
def plot(self):
# plot this array's data on a map, e.g., using Cartopy
pass
Now users can access your methods using the ``geo`` namespace:
>>> ds = pd.DataFrame({'longitude': np.linspace(0, 10),
... 'latitude': np.linspace(0, 20)})
>>> ds.geo.center
(5.0, 10.0)
>>> ds.geo.plot()
# plots data on a map
This can be a convenient way to extend pandas objects without subclassing them.
If you write a custom accessor, make a pull request adding it to our
:ref:`ecosystem` page.
.. _extending.extension-types:
Extension Types
---------------
Pandas defines an interface for implementing data types and arrays that *extend*
NumPy's type system. Pandas itself uses the extension system for some types
that aren't built into NumPy (categorical, period, interval, datetime with
timezone).
Libraries can define an custom array and data type. When pandas encounters these
objects, they will be handled properly (i.e. not converted to an ndarray of
objects). Many methods like :func:`pandas.isna` will dispatch to the extension
type's implementation.
If you're building a library that implements the interface, please publicize it
on :ref:`ecosystem.extensions`.
The interface consists of two classes.
``ExtensionDtype``
""""""""""""""""""
An ``ExtensionDtype`` is similar to a ``numpy.dtype`` object. It describes the
data type. Implementors are responsible for a few unique items like the name.
One particularly important item is the ``type`` property. This should be the
class that is the scalar type for your data. For example, if you were writing an
extension array for IP Address data, this might be ``ipaddress.IPv4Address``.
See the `extension dtype source`_ for interface definition.
``ExtensionArray``
""""""""""""""""""
This class provides all the array-like functionality. ExtensionArrays are
limited to 1 dimension. An ExtensionArray is linked to an ExtensionDtype via the
``dtype`` attribute.
Pandas makes no restrictions on how an extension array is created via its
``__new__`` or ``__init__``, and puts no restrictions on how you store your
data. We do require that your array be convertible to a NumPy array, even if
this is relatively expensive (as it is for ``Categorical``).
They may be backed by none, one, or many NumPy arrays. For example,
``pandas.Categorical`` is an extension array backed by two arrays,
one for codes and one for categories. An array of IPv6 addresses may
be backed by a NumPy structured array with two fields, one for the
lower 64 bits and one for the upper 64 bits. Or they may be backed
by some other storage type, like Python lists.
See the `extension array source`_ for the interface definition. The docstrings
and comments contain guidance for properly implementing the interface.
.. _extension dtype source: https://github.com/pandas-dev/pandas/blob/master/pandas/core/dtypes/base.py
.. _extension array source: https://github.com/pandas-dev/pandas/blob/master/pandas/core/arrays/base.py
.. _ref-subclassing-pandas:
Subclassing pandas Data Structures
----------------------------------
.. warning:: There are some easier alternatives before considering subclassing ``pandas`` data structures.
1. Extensible method chains with :ref:`pipe <basics.pipe>`
2. Use *composition*. See `here <http://en.wikipedia.org/wiki/Composition_over_inheritance>`_.
3. Extending by :ref:`registering an accessor <extending.register-accessors>`
4. Extending by :ref:`extension type <extending.extension-types>`
This section describes how to subclass ``pandas`` data structures to meet more specific needs. There are two points that need attention:
1. Override constructor properties.
2. Define original properties
.. note:: You can find a nice example in `geopandas <https://github.com/geopandas/geopandas>`_ project.
Override Constructor Properties
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Each data structure has several *constructor properties* for returning a new
data structure as the result of an operation. By overriding these properties,
you can retain subclasses through ``pandas`` data manipulations.
There are 3 constructor properties to be defined:
- ``_constructor``: Used when a manipulation result has the same dimesions as the original.
- ``_constructor_sliced``: Used when a manipulation result has one lower dimension(s) as the original, such as ``DataFrame`` single columns slicing.
- ``_constructor_expanddim``: Used when a manipulation result has one higher dimension as the original, such as ``Series.to_frame()`` and ``DataFrame.to_panel()``.
Following table shows how ``pandas`` data structures define constructor properties by default.
=========================== ======================= =============
Property Attributes ``Series`` ``DataFrame``
=========================== ======================= =============
``_constructor`` ``Series`` ``DataFrame``
``_constructor_sliced`` ``NotImplementedError`` ``Series``
``_constructor_expanddim`` ``DataFrame`` ``Panel``
=========================== ======================= =============
Below example shows how to define ``SubclassedSeries`` and ``SubclassedDataFrame`` overriding constructor properties.
.. code-block:: python
class SubclassedSeries(Series):
@property
def _constructor(self):
return SubclassedSeries
@property
def _constructor_expanddim(self):
return SubclassedDataFrame
class SubclassedDataFrame(DataFrame):
@property
def _constructor(self):
return SubclassedDataFrame
@property
def _constructor_sliced(self):
return SubclassedSeries
.. code-block:: python
>>> s = SubclassedSeries([1, 2, 3])
>>> type(s)
<class '__main__.SubclassedSeries'>
>>> to_framed = s.to_frame()
>>> type(to_framed)
<class '__main__.SubclassedDataFrame'>
>>> df = SubclassedDataFrame({'A', [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> type(df)
<class '__main__.SubclassedDataFrame'>
>>> sliced1 = df[['A', 'B']]
>>> sliced1
A B
0 1 4
1 2 5
2 3 6
>>> type(sliced1)
<class '__main__.SubclassedDataFrame'>
>>> sliced2 = df['A']
>>> sliced2
0 1
1 2
2 3
Name: A, dtype: int64
>>> type(sliced2)
<class '__main__.SubclassedSeries'>
Define Original Properties
~~~~~~~~~~~~~~~~~~~~~~~~~~
To let original data structures have additional properties, you should let ``pandas`` know what properties are added. ``pandas`` maps unknown properties to data names overriding ``__getattribute__``. Defining original properties can be done in one of 2 ways:
1. Define ``_internal_names`` and ``_internal_names_set`` for temporary properties which WILL NOT be passed to manipulation results.
2. Define ``_metadata`` for normal properties which will be passed to manipulation results.
Below is an example to define two original properties, "internal_cache" as a temporary property and "added_property" as a normal property
.. code-block:: python
class SubclassedDataFrame2(DataFrame):
# temporary properties
_internal_names = pd.DataFrame._internal_names + ['internal_cache']
_internal_names_set = set(_internal_names)
# normal properties
_metadata = ['added_property']
@property
def _constructor(self):
return SubclassedDataFrame2
.. code-block:: python
>>> df = SubclassedDataFrame2({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> df.internal_cache = 'cached'
>>> df.added_property = 'property'
>>> df.internal_cache
cached
>>> df.added_property
property
# properties defined in _internal_names is reset after manipulation
>>> df[['A', 'B']].internal_cache
AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache'
# properties defined in _metadata are retained
>>> df[['A', 'B']].added_property
property