Warning
Starting with the 1.x series of releases, pandas only supports Python 3.6.1 and higher.
Starting with Pandas 1.0.0, pandas will adopt a version of SemVer.
Historically, pandas has used a "rolling" deprecation policy, with occasional outright breaking API changes. Where possible, we would deprecate the behavior we'd like to change, giving an option to adopt the new behavior (via a keyword or an alternative method), and issuing a warning for users of the old behavior. Sometimes, a deprecation was not possible, and we would make an outright API breaking change.
We'll continue to introduce deprecations in major and minor releases (e.g. 1.0.0, 1.1.0, ...). Those deprecations will be enforced in the next major release.
Note that behavior changes and API breaking changes are not identical. API breaking changes will only be released in major versions. If we consider a behavior to be a bug, and fixing that bug induces a behavior change, we'll release that change in a minor release. This is a sometimes difficult judgment call that we'll do our best on.
This doesn't mean that pandas' pace of development will slow down. In the 2019 Pandas User Survey, about 95% of the respondents said they considered pandas "stable enough". This indicates there's an appetite for new features, even if it comes at the cost of break API. The difference is that now API breaking changes will be accompanied with a bump in the major version number (e.g. pandas 1.5.1 -> 2.0.0).
See :ref:`policies.version` for more.
{{ header }}
These are the changes in pandas 1.0.0. See :ref:`release` for a full changelog including other versions of pandas.
We've added :class:`StringDtype`, an extension type dedicated to string data. Previously, strings were typically stored in object-dtype NumPy arrays. (:issue:`29975`)
Warning
StringDtype
is currently considered experimental. The implementation
and parts of the API may change without warning.
The 'string'
extension type solves several issues with object-dtype NumPy arrays:
- You can accidentally store a mixture of strings and non-strings in an
object
dtype array. AStringArray
can only store strings. object
dtype breaks dtype-specific operations like :meth:`DataFrame.select_dtypes`. There isn't a clear way to select just text while excluding non-text, but still object-dtype columns.- When reading code, the contents of an
object
dtype array is less clear thanstring
.
.. ipython:: python pd.Series(['abc', None, 'def'], dtype=pd.StringDtype())
You can use the alias "string"
as well.
.. ipython:: python s = pd.Series(['abc', None, 'def'], dtype="string") s
The usual string accessor methods work. Where appropriate, the return type of the Series or columns of a DataFrame will also have string dtype.
.. ipython:: python s.str.upper() s.str.split('b', expand=True).dtypes
String accessor methods returning integers will return a value with :class:`Int64Dtype`
.. ipython:: python s.str.count("a")
We recommend explicitly using the string
data type when working with strings.
See :ref:`text.types` for more.
A new pd.NA
value (singleton) is introduced to represent scalar missing
values. Up to now, np.nan
is used for this for float data, np.nan
or
None
for object-dtype data and pd.NaT
for datetime-like data. The
goal of pd.NA
is provide a "missing" indicator that can be used
consistently across data types. For now, the nullable integer and boolean
data types and the new string data type make use of pd.NA
(:issue:`28095`).
Warning
Experimental: the behaviour of pd.NA
can still change without warning.
For example, creating a Series using the nullable integer dtype:
.. ipython:: python s = pd.Series([1, 2, None], dtype="Int64") s s[2]
Compared to np.nan
, pd.NA
behaves differently in certain operations.
In addition to arithmetic operations, pd.NA
also propagates as "missing"
or "unknown" in comparison operations:
.. ipython:: python np.nan > 1 pd.NA > 1
For logical operations, pd.NA
follows the rules of the
three-valued logic (or
Kleene logic). For example:
.. ipython:: python pd.NA | True
For more, see :ref:`NA section <missing_data.NA>` in the user guide on missing data.
We've added :class:`BooleanDtype` / :class:`~arrays.BooleanArray`, an extension
type dedicated to boolean data that can hold missing values. With the default
'bool
data type based on a numpy bool array, the column can only hold
True or False values and not missing values. This new :class:`BooleanDtype`
can store missing values as well by keeping track of this in a separate mask.
(:issue:`29555`, :issue:`30095`)
.. ipython:: python pd.Series([True, False, None], dtype=pd.BooleanDtype())
You can use the alias "boolean"
as well.
.. ipython:: python s = pd.Series([True, False, None], dtype="boolean") s
We've added an engine
keyword to :meth:`~Rolling.apply` that allows the user to execute the
routine using Numba instead of Cython. Using the Numba engine
can yield significant performance gains if the apply function can operate on numpy arrays and
the data set is larger (1 million rows or greater). For more details, see
:ref:`rolling apply documentation <stats.rolling_apply>` (:issue:`28987`)
We've added a :func:`pandas.api.indexers.BaseIndexer` class that allows users to define how
window bounds are created during rolling
operations. Users can define their own get_window_bounds
method on a :func:`pandas.api.indexers.BaseIndexer` subclass that will generate the start and end
indices used for each window during the rolling aggregation. For more details and example usage, see
the :ref:`custom window rolling documentation <stats.custom_rolling_window>`
- :meth:`DataFrame.to_string` added the
max_colwidth
parameter to control when wide columns are truncated (:issue:`9784`) - :meth:`MultiIndex.from_product` infers level names from inputs if not explicitly provided (:issue:`27292`)
- :meth:`DataFrame.to_latex` now accepts
caption
andlabel
arguments (:issue:`25436`) - The :ref:`integer dtype <integer_na>` with support for missing values and the
new :ref:`string dtype <text.types>` can now be converted to
pyarrow
(>= 0.15.0), which means that it is supported in writing to the Parquet file format when using thepyarrow
engine. It is currently not yet supported when converting back to pandas, so it will become an integer or float (depending on the presence of missing data) or object dtype column. (:issue:`28368`) - :meth:`DataFrame.to_json` now accepts an
indent
integer argument to enable pretty printing of JSON output (:issue:`12004`) - :meth:`read_stata` can read Stata 119 dta files. (:issue:`28250`)
- Implemented :meth:`pandas.core.window.Window.var` and :meth:`pandas.core.window.Window.std` functions (:issue:`26597`)
- Added
encoding
argument to :meth:`DataFrame.to_string` for non-ascii text (:issue:`28766`) - Added
encoding
argument to :func:`DataFrame.to_html` for non-ascii text (:issue:`28663`) - :meth:`Styler.background_gradient` now accepts
vmin
andvmax
arguments (:issue:`12145`) - :meth:`Styler.format` added the
na_rep
parameter to help format the missing values (:issue:`21527`, :issue:`28358`) - Roundtripping DataFrames with nullable integer or string data types to parquet (:meth:`~DataFrame.to_parquet` / :func:`read_parquet`) using the 'pyarrow' engine now preserve those data types with pyarrow >= 1.0.0 (:issue:`20612`).
- The
partition_cols
argument in :meth:`DataFrame.to_parquet` now accepts a string (:issue:`27117`) - :func:`pandas.read_json` now parses
NaN
,Infinity
and-Infinity
(:issue:`12213`) - The
pandas.np
submodule is now deprecated. Import numpy directly instead (:issue:`30296`) - :func:`to_parquet` now appropriately handles the
schema
argument for user defined schemas in the pyarrow engine. (:issue: 30270) - DataFrame constructor preserve ExtensionArray dtype with ExtensionArray (:issue:`11363`)
- :meth:`DataFrame.sort_values` and :meth:`Series.sort_values` have gained
ignore_index
keyword to be able to reset index after sorting (:issue:`30114`) - :meth:`DataFrame.to_markdown` and :meth:`Series.to_markdown` added (:issue:`11052`)
- :meth:`DataFrame.drop_duplicates` has gained
ignore_index
keyword to reset index (:issue:`30114`) - Added new writer for exporting Stata dta files in version 118,
StataWriter118
. This format supports exporting strings containing Unicode characters (:issue:`23573`) - :meth:`Series.map` now accepts
collections.abc.Mapping
subclasses as a mapper (:issue:`29733`) - The
pandas.datetime
class is now deprecated. Import fromdatetime
instead (:issue:`30296`)
Pandas has added a pyproject.toml file and will no longer include
cythonized files in the source distribution uploaded to PyPI (:issue:`28341`, :issue:`20775`). If you're installing
a built distribution (wheel) or via conda, this shouldn't have any effect on you. If you're building pandas from
source, you should no longer need to install Cython into your build environment before calling pip install pandas
.
As part of a larger refactor to :class:`MultiIndex` the level names are now stored separately from the levels (:issue:`27242`). We recommend using :attr:`MultiIndex.names` to access the names, and :meth:`Index.set_names` to update the names.
For backwards compatibility, you can still access the names via the levels.
.. ipython:: python mi = pd.MultiIndex.from_product([[1, 2], ['a', 'b']], names=['x', 'y']) mi.levels[0].name
However, it is no longer possible to update the names of the MultiIndex
via the name of the level. The following will silently fail to update the
name of the MultiIndex
.. ipython:: python mi.levels[0].name = "new name" mi.names
To update, use MultiIndex.set_names
, which returns a new MultiIndex
.
.. ipython:: python mi2 = mi.set_names("new name", level=0) mi2.names
New repr for :class:`~pandas.arrays.IntervalArray`
- :class:`pandas.arrays.IntervalArray` adopts a new
__repr__
in accordance with other array classes (:issue:`25022`)
pandas 0.25.x
In [1]: pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)])
Out[2]:
IntervalArray([(0, 1], (2, 3]],
closed='right',
dtype='interval[int64]')
pandas 1.0.0
.. ipython:: python pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)])
All :class:`SeriesGroupBy` aggregation methods now respect the observed
keyword
The following methods now also correctly output values for unobserved categories when called through groupby(..., observed=False)
(:issue:`17605`)
- :meth:`SeriesGroupBy.count`
- :meth:`SeriesGroupBy.size`
- :meth:`SeriesGroupBy.nunique`
- :meth:`SeriesGroupBy.nth`
.. ipython:: python df = pd.DataFrame({ "cat_1": pd.Categorical(list("AABB"), categories=list("ABC")), "cat_2": pd.Categorical(list("AB") * 2, categories=list("ABC")), "value": [0.1] * 4, }) df
pandas 0.25.x
In [2]: df.groupby(["cat_1", "cat_2"], observed=False)["value"].count()
Out[2]:
cat_1 cat_2
A A 1
B 1
B A 1
B 1
Name: value, dtype: int64
pandas 1.0.0
.. ipython:: python df.groupby(["cat_1", "cat_2"], observed=False)["value"].count()
:meth:`pandas.array` inference changes
:meth:`pandas.array` now infers pandas' new extension types in several cases (:issue:`29791`):
- String data (including missing values) now returns a :class:`arrays.StringArray`.
- Integer data (including missing values) now returns a :class:`arrays.IntegerArray`.
- Boolean data (including missing values) now returns the new :class:`arrays.BooleanArray`
pandas 0.25.x
>>> pd.array(["a", None])
<PandasArray>
['a', None]
Length: 2, dtype: object
>>> pd.array([1, None])
<PandasArray>
[1, None]
Length: 2, dtype: object
pandas 1.0.0
.. ipython:: python pd.array(["a", None]) pd.array([1, None])
As a reminder, you can specify the dtype
to disable all inference.
:class:`arrays.IntegerArray` now uses :attr:`pandas.NA` rather than :attr:`numpy.nan` as its missing value marker (:issue:`29964`).
pandas 0.25.x
>>> a = pd.array([1, 2, None], dtype="Int64")
>>> a
<IntegerArray>
[1, 2, NaN]
Length: 3, dtype: Int64
>>> a[2]
nan
pandas 1.0.0
.. ipython:: python a = pd.array([1, 2, None], dtype="Int64") a[2]
See :ref:`missing_data.NA` for more on the differences between :attr:`pandas.NA` and :attr:`numpy.nan`.
:class:`arrays.IntegerArray` comparisons return :class:`arrays.BooleanArray`
Comparison operations on a :class:`arrays.IntegerArray` now returns a :class:`arrays.BooleanArray` rather than a NumPy array (:issue:`29964`).
pandas 0.25.x
>>> a = pd.array([1, 2, None], dtype="Int64")
>>> a
<IntegerArray>
[1, 2, NaN]
Length: 3, dtype: Int64
>>> a > 1
array([False, True, False])
pandas 1.0.0
.. ipython:: python a = pd.array([1, 2, None], dtype="Int64") a > 1
Note that missing values now propagate, rather than always comparing unequal like :attr:`numpy.nan`. See :ref:`missing_data.NA` for more.
By default :meth:`Categorical.min` now returns the minimum instead of np.nan
When :class:`Categorical` contains np.nan
,
:meth:`Categorical.min` no longer return np.nan
by default (skipna=True) (:issue:`25303`)
pandas 0.25.x
In [1]: pd.Categorical([1, 2, np.nan], ordered=True).min()
Out[1]: nan
pandas 1.0.0
.. ipython:: python pd.Categorical([1, 2, np.nan], ordered=True).min()
Default dtype of empty :class:`pandas.Series`
Initialising an empty :class:`pandas.Series` without specifying a dtype will raise a DeprecationWarning now
(:issue:`17261`). The default dtype will change from float64
to object
in future releases so that it is
consistent with the behaviour of :class:`DataFrame` and :class:`Index`.
pandas 1.0.0
In [1]: pd.Series()
Out[2]:
DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
Series([], dtype: float64)
Some minimum supported versions of dependencies were updated (:issue:`29766`, :issue:`29723`). If installed, we now require:
Package | Minimum Version | Required | Changed |
---|---|---|---|
numpy | 1.13.3 | X | |
pytz | 2015.4 | X | |
python-dateutil | 2.6.1 | X | |
bottleneck | 1.2.1 | ||
numexpr | 2.6.2 | ||
pytest (dev) | 4.0.2 |
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
Package | Minimum Version | Changed |
---|---|---|
beautifulsoup4 | 4.6.0 | |
fastparquet | 0.3.2 | X |
gcsfs | 0.2.2 | |
lxml | 3.8.0 | |
matplotlib | 2.2.2 | |
numba | 0.46.0 | X |
openpyxl | 2.5.7 | X |
pyarrow | 0.12.0 | X |
pymysql | 0.7.1 | |
pytables | 3.4.2 | |
s3fs | 0.3.0 | X |
scipy | 0.19.0 | |
sqlalchemy | 1.1.4 | |
xarray | 0.8.2 | |
xlrd | 1.1.0 | |
xlsxwriter | 0.9.8 | |
xlwt | 1.2.0 |
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
- Bumped the minimum supported version of
s3fs
from 0.0.8 to 0.3.0 (:issue:`28616`) - :class:`pandas.core.groupby.GroupBy.transform` now raises on invalid operation names (:issue:`27489`)
- :meth:`pandas.api.types.infer_dtype` will now return "integer-na" for integer and
np.nan
mix (:issue:`27283`) - :meth:`MultiIndex.from_arrays` will no longer infer names from arrays if
names=None
is explicitly provided (:issue:`27292`) - In order to improve tab-completion, Pandas does not include most deprecated attributes when introspecting a pandas object using
dir
(e.g.dir(df)
). To see which attributes are excluded, see an object's_deprecations
attribute, for examplepd.DataFrame._deprecations
(:issue:`28805`). - The returned dtype of ::func:`pd.unique` now matches the input dtype. (:issue:`27874`)
- Changed the default configuration value for
options.matplotlib.register_converters
fromTrue
to"auto"
(:issue:`18720`). Now, pandas custom formatters will only be applied to plots created by pandas, through :meth:`~DataFrame.plot`. Previously, pandas' formatters would be applied to all plots created after a :meth:`~DataFrame.plot`. See :ref:`units registration <whatsnew_1000.matplotlib_units>` for more. - :meth:`Series.dropna` has dropped its
**kwargs
argument in favor of a singlehow
parameter. Supplying anything else thanhow
to**kwargs
raised aTypeError
previously (:issue:`29388`) - When testing pandas, the new minimum required version of pytest is 5.0.1 (:issue:`29664`)
- :meth:`Series.str.__iter__` was deprecated and will be removed in future releases (:issue:`28277`).
- Added new section on :ref:`scale` (:issue:`28315`).
- Added sub-section Query MultiIndex in IO tools user guide (:issue:`28791`)
- :meth:`Series.item` and :meth:`Index.item` have been _undeprecated_ (:issue:`29250`)
Index.set_value
has been deprecated. For a given indexidx
, arrayarr
, value inidx
ofidx_val
and a new value ofval
,idx.set_value(arr, idx_val, val)
is equivalent toarr[idx.get_loc(idx_val)] = val
, which should be used instead (:issue:`28621`).- :func:`is_extension_type` is deprecated, :func:`is_extension_array_dtype` should be used instead (:issue:`29457`)
- :func:`eval` keyword argument "truediv" is deprecated and will be removed in a future version (:issue:`29812`)
- :meth:`DateOffset.isAnchored` and :meth:`DatetOffset.onOffset` are deprecated and will be removed in a future version, use :meth:`DateOffset.is_anchored` and :meth:`DateOffset.is_on_offset` instead (:issue:`30340`)
pandas.tseries.frequencies.get_offset
is deprecated and will be removed in a future version, usepandas.tseries.frequencies.to_offset
instead (:issue:`4205`)- :meth:`Categorical.take_nd` is deprecated, use :meth:`Categorical.take` instead (:issue:`27745`)
- The parameter
numeric_only
of :meth:`Categorical.min` and :meth:`Categorical.max` is deprecated and replaced withskipna
(:issue:`25303`) - The parameter
label
in :func:`lreshape` has been deprecated and will be removed in a future version (:issue:`29742`) pandas.core.index
has been deprecated and will be removed in a future version, the public classes are available in the top-level namespace (:issue:`19711`)- :func:`pandas.json_normalize` is now exposed in the top-level namespace.
Usage of
json_normalize
aspandas.io.json.json_normalize
is now deprecated and it is recommended to usejson_normalize
as :func:`pandas.json_normalize` instead (:issue:`27586`). - :meth:`DataFrame.to_stata`, :meth:`DataFrame.to_feather`, and :meth:`DataFrame.to_parquet` argument "fname" is deprecated, use "path" instead (:issue:`23574`)
- The deprecated internal attributes
_start
,_stop
and_step
of :class:`RangeIndex` now raise aFutureWarning
instead of aDeprecationWarning
(:issue:`26581`)
SparseSeries
, SparseDataFrame
and the DataFrame.to_sparse
method
have been removed (:issue:`28425`). We recommend using a Series
or
DataFrame
with sparse values instead. See :ref:`sparse.migration` for help
with migrating existing code.
Matplotlib unit registration
Previously, pandas would register converters with matplotlib as a side effect of importing pandas (:issue:`18720`). This changed the output of plots made via matplotlib plots after pandas was imported, even if you were using matplotlib directly rather than :meth:`~DataFrame.plot`.
To use pandas formatters with a matplotlib plot, specify
>>> import pandas as pd
>>> pd.options.plotting.matplotlib.register_converters = True
Note that plots created by :meth:`DataFrame.plot` and :meth:`Series.plot` do register the converters
automatically. The only behavior change is when plotting a date-like object via matplotlib.pyplot.plot
or matplotlib.Axes.plot
. See :ref:`plotting.formatters` for more.
Other removals
- Removed the previously deprecated keyword "index" from :func:`read_stata`, :class:`StataReader`, and :meth:`StataReader.read`, use "index_col" instead (:issue:`17328`)
- Removed :meth:`StataReader.data` method, use :meth:`StataReader.read` instead (:issue:`9493`)
- Removed :func:`pandas.plotting._matplotlib.tsplot`, use :meth:`Series.plot` instead (:issue:`19980`)
- :func:`pandas.tseries.converter.register` has been moved to :func:`pandas.plotting.register_matplotlib_converters` (:issue:`18307`)
- :meth:`Series.plot` no longer accepts positional arguments, pass keyword arguments instead (:issue:`30003`)
- :meth:`DataFrame.hist` and :meth:`Series.hist` no longer allows
figsize="default"
, specify figure size by passinig a tuple instead (:issue:`30003`) - Floordiv of integer-dtyped array by :class:`Timedelta` now raises
TypeError
(:issue:`21036`) - :class:`TimedeltaIndex` and :class:`DatetimeIndex` no longer accept non-nanosecond dtype strings like "timedelta64" or "datetime64", use "timedelta64[ns]" and "datetime64[ns]" instead (:issue:`24806`)
- Changed the default "skipna" argument in :func:`pandas.api.types.infer_dtype` from
False
toTrue
(:issue:`24050`) - Removed :attr:`Series.ix` and :attr:`DataFrame.ix` (:issue:`26438`)
- Removed :meth:`Index.summary` (:issue:`18217`)
- Removed the previously deprecated keyword "fastpath" from the :class:`Index` constructor (:issue:`23110`)
- Removed :meth:`Series.get_value`, :meth:`Series.set_value`, :meth:`DataFrame.get_value`, :meth:`DataFrame.set_value` (:issue:`17739`)
- Removed :meth:`Series.compound` and :meth:`DataFrame.compound` (:issue:`26405`)
- Changed the default "inplace" argument in :meth:`DataFrame.set_index` and :meth:`Series.set_axis` from
None
toFalse
(:issue:`27600`) - Removed :attr:`Series.cat.categorical`, :attr:`Series.cat.index`, :attr:`Series.cat.name` (:issue:`24751`)
- Removed the previously deprecated keyword "box" from :func:`to_datetime` and :func:`to_timedelta`; in addition these now always returns :class:`DatetimeIndex`, :class:`TimedeltaIndex`, :class:`Index`, :class:`Series`, or :class:`DataFrame` (:issue:`24486`)
- :func:`to_timedelta`, :class:`Timedelta`, and :class:`TimedeltaIndex` no longer allow "M", "y", or "Y" for the "unit" argument (:issue:`23264`)
- Removed the previously deprecated keyword "time_rule" from (non-public) :func:`offsets.generate_range`, which has been moved to :func:`core.arrays._ranges.generate_range` (:issue:`24157`)
- :meth:`DataFrame.loc` or :meth:`Series.loc` with listlike indexers and missing labels will no longer reindex (:issue:`17295`)
- :meth:`DataFrame.to_excel` and :meth:`Series.to_excel` with non-existent columns will no longer reindex (:issue:`17295`)
- Removed the previously deprecated keyword "join_axes" from :func:`concat`; use
reindex_like
on the result instead (:issue:`22318`) - Removed the previously deprecated keyword "by" from :meth:`DataFrame.sort_index`, use :meth:`DataFrame.sort_values` instead (:issue:`10726`)
- Removed support for nested renaming in :meth:`DataFrame.aggregate`, :meth:`Series.aggregate`, :meth:`DataFrameGroupBy.aggregate`, :meth:`SeriesGroupBy.aggregate`, :meth:`Rolling.aggregate` (:issue:`18529`)
- Passing
datetime64
data to :class:`TimedeltaIndex` ortimedelta64
data toDatetimeIndex
now raisesTypeError
(:issue:`23539`, :issue:`23937`) - Passing
int64
values to :class:`DatetimeIndex` and a timezone now interprets the values as nanosecond timestamps in UTC, not wall times in the given timezone (:issue:`24559`) - A tuple passed to :meth:`DataFrame.groupby` is now exclusively treated as a single key (:issue:`18314`)
- Removed :meth:`Index.contains`, use
key in index
instead (:issue:`30103`) - Addition and subtraction of
int
or integer-arrays is no longer allowed in :class:`Timestamp`, :class:`DatetimeIndex`, :class:`TimedeltaIndex`, useobj + n * obj.freq
instead ofobj + n
(:issue:`22535`) - Removed :meth:`Series.ptp` (:issue:`21614`)
- Removed :meth:`Series.from_array` (:issue:`18258`)
- Removed :meth:`DataFrame.from_items` (:issue:`18458`)
- Removed :meth:`DataFrame.as_matrix`, :meth:`Series.as_matrix` (:issue:`18458`)
- Removed :meth:`Series.asobject` (:issue:`18477`)
- Removed :meth:`DataFrame.as_blocks`, :meth:`Series.as_blocks`, DataFrame.blocks, :meth:`Series.blocks` (:issue:`17656`)
- :meth:`pandas.Series.str.cat` now defaults to aligning
others
, usingjoin='left'
(:issue:`27611`) - :meth:`pandas.Series.str.cat` does not accept list-likes within list-likes anymore (:issue:`27611`)
- :meth:`Series.where` with
Categorical
dtype (or :meth:`DataFrame.where` withCategorical
column) no longer allows setting new categories (:issue:`24114`) - Removed the previously deprecated keywords "start", "end", and "periods" from the :class:`DatetimeIndex`, :class:`TimedeltaIndex`, and :class:`PeriodIndex` constructors; use :func:`date_range`, :func:`timedelta_range`, and :func:`period_range` instead (:issue:`23919`)
- Removed the previously deprecated keyword "verify_integrity" from the :class:`DatetimeIndex` and :class:`TimedeltaIndex` constructors (:issue:`23919`)
- Removed the previously deprecated keyword "fastpath" from
pandas.core.internals.blocks.make_block
(:issue:`19265`) - Removed the previously deprecated keyword "dtype" from :meth:`Block.make_block_same_class` (:issue:`19434`)
- Removed :meth:`ExtensionArray._formatting_values`. Use :attr:`ExtensionArray._formatter` instead. (:issue:`23601`)
- Removed :meth:`MultiIndex.to_hierarchical` (:issue:`21613`)
- Removed :attr:`MultiIndex.labels`, use :attr:`MultiIndex.codes` instead (:issue:`23752`)
- Removed the previously deprecated keyword "labels" from the :class:`MultiIndex` constructor, use "codes" instead (:issue:`23752`)
- Removed :meth:`MultiIndex.set_labels`, use :meth:`MultiIndex.set_codes` instead (:issue:`23752`)
- Removed the previously deprecated keyword "labels" from :meth:`MultiIndex.set_codes`, :meth:`MultiIndex.copy`, :meth:`MultiIndex.drop`, use "codes" instead (:issue:`23752`)
- Removed support for legacy HDF5 formats (:issue:`29787`)
- Passing a dtype alias (e.g. 'datetime64[ns, UTC]') to :class:`DatetimeTZDtype` is no longer allowed, use :meth:`DatetimeTZDtype.construct_from_string` instead (:issue:`23990`)
- Removed the previously deprecated keyword "skip_footer" from :func:`read_excel`; use "skipfooter" instead (:issue:`18836`)
- :func:`read_excel` no longer allows an integer value for the parameter
usecols
, instead pass a list of integers from 0 tousecols
inclusive (:issue:`23635`) - Removed the previously deprecated keyword "convert_datetime64" from :meth:`DataFrame.to_records` (:issue:`18902`)
- Removed :meth:`IntervalIndex.from_intervals` in favor of the :class:`IntervalIndex` constructor (:issue:`19263`)
- Changed the default "keep_tz" argument in :meth:`DatetimeIndex.to_series` from
None
toTrue
(:issue:`23739`) - Removed :func:`api.types.is_period` and :func:`api.types.is_datetimetz` (:issue:`23917`)
- Ability to read pickles containing :class:`Categorical` instances created with pre-0.16 version of pandas has been removed (:issue:`27538`)
- Removed :func:`pandas.tseries.plotting.tsplot` (:issue:`18627`)
- Removed the previously deprecated keywords "reduce" and "broadcast" from :meth:`DataFrame.apply` (:issue:`18577`)
- Removed the previously deprecated
assert_raises_regex
function inpandas.util.testing
(:issue:`29174`) - Removed the previously deprecated
FrozenNDArray
class inpandas.core.indexes.frozen
(:issue:`29335`) - Removed the previously deprecated keyword "nthreads" from :func:`read_feather`, use "use_threads" instead (:issue:`23053`)
- Removed :meth:`Index.is_lexsorted_for_tuple` (:issue:`29305`)
- Removed support for nested renaming in :meth:`DataFrame.aggregate`, :meth:`Series.aggregate`, :meth:`DataFrameGroupBy.aggregate`, :meth:`SeriesGroupBy.aggregate`, :meth:`Rolling.aggregate` (:issue:`29608`)
- Removed :meth:`Series.valid`; use :meth:`Series.dropna` instead (:issue:`18800`)
- Removed :attr:`DataFrame.is_copy`, :attr:`Series.is_copy` (:issue:`18812`)
- Removed :meth:`DataFrame.get_ftype_counts`, :meth:`Series.get_ftype_counts` (:issue:`18243`)
- Removed :meth:`DataFrame.ftypes`, :meth:`Series.ftypes`, :meth:`Series.ftype` (:issue:`26744`)
- Removed :meth:`Index.get_duplicates`, use
idx[idx.duplicated()].unique()
instead (:issue:`20239`) - Removed :meth:`Series.clip_upper`, :meth:`Series.clip_lower`, :meth:`DataFrame.clip_upper`, :meth:`DataFrame.clip_lower` (:issue:`24203`)
- Removed the ability to alter :attr:`DatetimeIndex.freq`, :attr:`TimedeltaIndex.freq`, or :attr:`PeriodIndex.freq` (:issue:`20772`)
- Removed :attr:`DatetimeIndex.offset` (:issue:`20730`)
- Removed :meth:`DatetimeIndex.asobject`, :meth:`TimedeltaIndex.asobject`, :meth:`PeriodIndex.asobject`, use
astype(object)
instead (:issue:`29801`) - Removed the previously deprecated keyword "order" from :func:`factorize` (:issue:`19751`)
- Removed the previously deprecated keyword "encoding" from :func:`read_stata` and :meth:`DataFrame.to_stata` (:issue:`21400`)
- Changed the default "sort" argument in :func:`concat` from
None
toFalse
(:issue:`20613`) - Removed the previously deprecated keyword "raise_conflict" from :meth:`DataFrame.update`, use "errors" instead (:issue:`23585`)
- Removed the previously deprecated keyword "n" from :meth:`DatetimeIndex.shift`, :meth:`TimedeltaIndex.shift`, :meth:`PeriodIndex.shift`, use "periods" instead (:issue:`22458`)
- Removed the previously deprecated keywords "how", "fill_method", and "limit" from :meth:`DataFrame.resample` (:issue:`30139`)
- Passing an integer to :meth:`Series.fillna` or :meth:`DataFrame.fillna` with
timedelta64[ns]
dtype now raisesTypeError
(:issue:`24694`) - Passing multiple axes to :meth:`DataFrame.dropna` is no longer supported (:issue:`20995`)
- Removed :meth:`Series.nonzero`, use to_numpy().nonzero() instead (:issue:`24048`)
- Passing floating dtype
codes
to :meth:`Categorical.from_codes` is no longer supported, passcodes.astype(np.int64)
instead (:issue:`21775`) - Removed the previously deprecated keyword "pat" from :meth:`Series.str.partition` and :meth:`Series.str.rpartition`, use "sep" instead (:issue:`23767`)
- Removed :meth:`Series.put` (:issue:`27106`)
- Removed :attr:`Series.real`, :attr:`Series.imag` (:issue:`27106`)
- Removed :meth:`Series.to_dense`, :meth:`DataFrame.to_dense` (:issue:`26684`)
- Removed :meth:`Index.dtype_str`, use
str(index.dtype)
instead (:issue:`27106`) - :meth:`Categorical.ravel` returns a :class:`Categorical` instead of a
ndarray
(:issue:`27199`) - The 'outer' method on Numpy ufuncs, e.g.
np.subtract.outer
operating on :class:`Series` objects is no longer supported, and will raiseNotImplementedError
(:issue:`27198`) - Removed :meth:`Series.get_dtype_counts` and :meth:`DataFrame.get_dtype_counts` (:issue:`27145`)
- Changed the default "fill_value" argument in :meth:`Categorical.take` from
True
toFalse
(:issue:`20841`) - Changed the default value for the raw argument in :func:`Series.rolling().apply() <pandas.core.window.Rolling.apply>`, :func:`DataFrame.rolling().apply() <pandas.core.window.Rolling.apply>`, :func:`Series.expanding().apply() <pandas.core.window.Expanding.apply>`, and :func:`DataFrame.expanding().apply() <pandas.core.window.Expanding.apply>` from
None
toFalse
(:issue:`20584`) - Removed deprecated behavior of :meth:`Series.argmin` and :meth:`Series.argmax`, use :meth:`Series.idxmin` and :meth:`Series.idxmax` for the old behavior (:issue:`16955`)
- Passing a tz-aware
datetime.datetime
or :class:`Timestamp` into the :class:`Timestamp` constructor with thetz
argument now raises aValueError
(:issue:`23621`) - Removed :attr:`Series.base`, :attr:`Index.base`, :attr:`Categorical.base`, :attr:`Series.flags`, :attr:`Index.flags`, :attr:`PeriodArray.flags`, :attr:`Series.strides`, :attr:`Index.strides`, :attr:`Series.itemsize`, :attr:`Index.itemsize`, :attr:`Series.data`, :attr:`Index.data` (:issue:`20721`)
- Changed :meth:`Timedelta.resolution` to match the behavior of the standard library
datetime.timedelta.resolution
, for the old behavior, use :meth:`Timedelta.resolution_string` (:issue:`26839`) - Removed :attr:`Timestamp.weekday_name`, :attr:`DatetimeIndex.weekday_name`, and :attr:`Series.dt.weekday_name` (:issue:`18164`)
- Removed the previously deprecated keyword "errors" in :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` (:issue:`22644`)
- Changed the default "ordered" argument in :class:`CategoricalDtype` from
None
toFalse
(:issue:`26336`) - :meth:`Series.set_axis` and :meth:`DataFrame.set_axis` now require "labels" as the first argument and "axis" as an optional named parameter (:issue:`30089`)
- Removed :func:`to_msgpack`, :func:`read_msgpack`, :meth:`DataFrame.to_msgpack`, :meth:`Series.to_msgpack` (:issue:`27103`)
- Removed :meth:`Series.compress` (:issue:`21930`)
- Removed the previously deprecated keyword "fill_value" from :meth:`Categorical.fillna`, use "value" instead (:issue:`19269`)
- Removed the previously deprecated keyword "data" from :func:`andrews_curves`, use "frame" instead (:issue:`6956`)
- Removed the previously deprecated keyword "data" from :func:`parallel_coordinates`, use "frame" instead (:issue:`6956`)
- Removed the previously deprecated keyword "colors" from :func:`parallel_coordinates`, use "color" instead (:issue:`6956`)
- Removed the previously deprecated keywords "verbose" and "private_key" from :func:`read_gbq` (:issue:`30200`)
- Performance improvement in :class:`DataFrame` arithmetic and comparison operations with scalars (:issue:`24990`, :issue:`29853`)
- Performance improvement in indexing with a non-unique :class:`IntervalIndex` (:issue:`27489`)
- Performance improvement in :attr:`MultiIndex.is_monotonic` (:issue:`27495`)
- Performance improvement in :func:`cut` when
bins
is an :class:`IntervalIndex` (:issue:`27668`) - Performance improvement when initializing a :class:`DataFrame` using a
range
(:issue:`30171`) - Performance improvement in :meth:`DataFrame.corr` when
method
is"spearman"
(:issue:`28139`) - Performance improvement in :meth:`DataFrame.replace` when provided a list of values to replace (:issue:`28099`)
- Performance improvement in :meth:`DataFrame.select_dtypes` by using vectorization instead of iterating over a loop (:issue:`28317`)
- Performance improvement in :meth:`Categorical.searchsorted` and :meth:`CategoricalIndex.searchsorted` (:issue:`28795`)
- Performance improvement when comparing a :class:`Categorical` with a scalar and the scalar is not found in the categories (:issue:`29750`)
- Performance improvement when checking if values in a :class:`Categorical` are equal, equal or larger or larger than a given scalar. The improvement is not present if checking if the :class:`Categorical` is less than or less than or equal than the scalar (:issue:`29820`)
- Performance improvement in :meth:`Index.equals` and :meth:`MultiIndex.equals` (:issue:`29134`)
- Performance improvement in :func:`~pandas.api.types.infer_dtype` when
skipna
isTrue
(:issue:`28814`)
- Added test to assert the :func:`fillna` raises the correct
ValueError
message when the value isn't a value from categories (:issue:`13628`) - Bug in :meth:`Categorical.astype` where
NaN
values were handled incorrectly when casting to int (:issue:`28406`) - :meth:`DataFrame.reindex` with a :class:`CategoricalIndex` would fail when the targets contained duplicates, and wouldn't fail if the source contained duplicates (:issue:`28107`)
- Bug in :meth:`Categorical.astype` not allowing for casting to extension dtypes (:issue:`28668`)
- Bug where :func:`merge` was unable to join on categorical and extension dtype columns (:issue:`28668`)
- :meth:`Categorical.searchsorted` and :meth:`CategoricalIndex.searchsorted` now work on unordered categoricals also (:issue:`21667`)
- Added test to assert roundtripping to parquet with :func:`DataFrame.to_parquet` or :func:`read_parquet` will preserve Categorical dtypes for string types (:issue:`27955`)
- Changed the error message in :meth:`Categorical.remove_categories` to always show the invalid removals as a set (:issue:`28669`)
- Using date accessors on a categorical dtyped :class:`Series` of datetimes was not returning an object of the same type as if one used the :meth:`.str.` / :meth:`.dt.` on a :class:`Series` of that type. E.g. when accessing :meth:`Series.dt.tz_localize` on a :class:`Categorical` with duplicate entries, the accessor was skipping duplicates (:issue:`27952`)
- Bug in :meth:`DataFrame.replace` and :meth:`Series.replace` that would give incorrect results on categorical data (:issue:`26988`)
- Bug where calling :meth:`Categorical.min` or :meth:`Categorical.max` on an empty Categorical would raise a numpy exception (:issue:`30227`)
- Bug in :meth:`Series.__setitem__` incorrectly casting
np.timedelta64("NaT")
tonp.datetime64("NaT")
when inserting into a :class:`Series` with datetime64 dtype (:issue:`27311`) - Bug in :meth:`Series.dt` property lookups when the underlying data is read-only (:issue:`27529`)
- Bug in
HDFStore.__getitem__
incorrectly reading tz attribute created in Python 2 (:issue:`26443`) - Bug in :func:`to_datetime` where passing arrays of malformed
str
with errors="coerce" could incorrectly lead to raisingValueError
(:issue:`28299`) - Bug in :meth:`pandas.core.groupby.SeriesGroupBy.nunique` where
NaT
values were interfering with the count of unique values (:issue:`27951`) - Bug in :class:`Timestamp` subtraction when subtracting a :class:`Timestamp` from a
np.datetime64
object incorrectly raisingTypeError
(:issue:`28286`) - Addition and subtraction of integer or integer-dtype arrays with :class:`Timestamp` will now raise
NullFrequencyError
instead ofValueError
(:issue:`28268`) - Bug in :class:`Series` and :class:`DataFrame` with integer dtype failing to raise
TypeError
when adding or subtracting anp.datetime64
object (:issue:`28080`) - Bug in :meth:`Series.astype`, :meth:`Index.astype`, and :meth:`DataFrame.astype` failing to handle
NaT
when casting to an integer dtype (:issue:`28492`) - Bug in :class:`Week` with
weekday
incorrectly raisingAttributeError
instead ofTypeError
when adding or subtracting an invalid type (:issue:`28530`) - Bug in :class:`DataFrame` arithmetic operations when operating with a :class:`Series` with dtype 'timedelta64[ns]' (:issue:`28049`)
- Bug in :func:`pandas.core.groupby.generic.SeriesGroupBy.apply` raising
ValueError
when a column in the original DataFrame is a datetime and the column labels are not standard integers (:issue:`28247`) - Bug in :func:`pandas._config.localization.get_locales` where the
locales -a
encodes the locales list as windows-1252 (:issue:`23638`, :issue:`24760`, :issue:`27368`) - Bug in :meth:`Series.var` failing to raise
TypeError
when called withtimedelta64[ns]
dtype (:issue:`28289`) - Bug in :meth:`DatetimeIndex.strftime` and :meth:`Series.dt.strftime` where
NaT
was converted to the string'NaT'
instead ofnp.nan
(:issue:`29578`) - Bug in masking datetime-like arrays with a boolean mask of an incorrect length not raising an
IndexError
(:issue:`30308`) - Bug in :attr:`Timestamp.resolution` being a property instead of a class attribute (:issue:`29910`)
- Bug in :func:`pandas.to_datetime` when called with
None
raisingTypeError
instead of returningNaT
(:issue:`30011`) - Bug in :func:`pandas.to_datetime` failing for deques when using
cache=True
(the default) (:issue:`29403`) - Bug in :meth:`Series.item` with
datetime64
ortimedelta64
dtype, :meth:`DatetimeIndex.item`, and :meth:`TimedeltaIndex.item` returning an integer instead of a :class:`Timestamp` or :class:`Timedelta` (:issue:`30175`) - Bug in :class:`DatetimeIndex` addition when adding a non-optimized :class:`DateOffset` incorrectly dropping timezone information (:issue:`30336`)
- Bug in :meth:`DataFrame.drop` where attempting to drop non-existent values from a DatetimeIndex would yield a confusing error message (:issue:`30399`)
- Bug in :meth:`DataFrame.append` would remove the timezone-awareness of new data (:issue:`30238`)
- Bug in :meth:`Series.cummin` and :meth:`Series.cummax` with timezone-aware dtype incorrectly dropping its timezone (:issue:`15553`)
- Bug in :class:`DatetimeArray`, :class:`TimedeltaArray`, and :class:`PeriodArray` where inplace addition and subtraction did not actually operate inplace (:issue:`24115`)
- Bug in subtracting a :class:`TimedeltaIndex` or :class:`TimedeltaArray` from a
np.datetime64
object (:issue:`29558`)
- Bug in :meth:`DataFrame.quantile` with zero-column :class:`DataFrame` incorrectly raising (:issue:`23925`)
- :class:`DataFrame` flex inequality comparisons methods (:meth:`DataFrame.lt`, :meth:`DataFrame.le`, :meth:`DataFrame.gt`, :meth:`DataFrame.ge`) with object-dtype and
complex
entries failing to raiseTypeError
like their :class:`Series` counterparts (:issue:`28079`) - Bug in :class:`DataFrame` logical operations (&, |, ^) not matching :class:`Series` behavior by filling NA values (:issue:`28741`)
- Bug in :meth:`DataFrame.interpolate` where specifying axis by name references variable before it is assigned (:issue:`29142`)
- Bug in :meth:`Series.var` not computing the right value with a nullable integer dtype series not passing through ddof argument (:issue:`29128`)
- Improved error message when using frac > 1 and replace = False (:issue:`27451`)
- Bug in numeric indexes resulted in it being possible to instantiate an :class:`Int64Index`, :class:`UInt64Index`, or :class:`Float64Index` with an invalid dtype (e.g. datetime-like) (:issue:`29539`)
- Bug in :class:`UInt64Index` precision loss while constructing from a list with values in the
np.uint64
range (:issue:`29526`) - Bug in :class:`NumericIndex` construction that caused indexing to fail when integers in the
np.uint64
range were used (:issue:`28023`) - Bug in :class:`NumericIndex` construction that caused :class:`UInt64Index` to be casted to :class:`Float64Index` when integers in the
np.uint64
range were used to index a :class:`DataFrame` (:issue:`28279`) - Bug in :meth:`Series.interpolate` when using method=`index` with an unsorted index, would previously return incorrect results. (:issue:`21037`)
- Bug in :meth:`DataFrame.round` where a :class:`DataFrame` with a :class:`CategoricalIndex` of :class:`IntervalIndex` columns would incorrectly raise a
TypeError
(:issue:`30063`) - Bug in :class:`DataFrame` cumulative operations (e.g. cumsum, cummax) incorrect casting to object-dtype (:issue:`19296`)
- Calling :meth:`Series.str.isalnum` (and other "ismethods") on an empty Series would return an object dtype instead of bool (:issue:`29624`)
- Bug in :meth:`IntervalIndex.get_indexer` where a :class:`Categorical` or :class:`CategoricalIndex`
target
would incorrectly raise aTypeError
(:issue:`30063`) - Bug in
pandas.core.dtypes.cast.infer_dtype_from_scalar
where passingpandas_dtype=True
did not infer :class:`IntervalDtype` (:issue:`30337`) - Bug in :class:`IntervalDtype` where the
kind
attribute was incorrectly set asNone
instead of"O"
(:issue:`30568`)
- Bug in assignment using a reverse slicer (:issue:`26939`)
- Bug in :meth:`DataFrame.explode` would duplicate frame in the presence of duplicates in the index (:issue:`28010`)
- Bug in reindexing a :meth:`PeriodIndex` with another type of index that contained a Period (:issue:`28323`) (:issue:`28337`)
- Fix assignment of column via .loc with numpy non-ns datetime type (:issue:`27395`)
- Bug in :meth:`Float64Index.astype` where
np.inf
was not handled properly when casting to an integer dtype (:issue:`28475`) - :meth:`Index.union` could fail when the left contained duplicates (:issue:`28257`)
- Bug when indexing with
.loc
where the index was a :class:`CategoricalIndex` with non-string categories didn't work (:issue:`17569`, :issue:`30225`) - :meth:`Index.get_indexer_non_unique` could fail with TypeError in some cases, such as when searching for ints in a string index (:issue:`28257`)
- Bug in :meth:`Float64Index.get_loc` incorrectly raising
TypeError
instead ofKeyError
(:issue:`29189`) - Bug in :meth:`Series.__setitem__` incorrectly assigning values with boolean indexer when the length of new data matches the number of
True
values and new data is not aSeries
or annp.array
(:issue:`30567`)
- Constructior for :class:`MultiIndex` verifies that the given
sortorder
is compatible with the actuallexsort_depth
ifverify_integrity
parameter isTrue
(the default) (:issue:`28735`) - Series and MultiIndex .drop with MultiIndex raise exception if labels not in given in level (:issue:`8594`)
- :meth:`read_csv` now accepts binary mode file buffers when using the Python csv engine (:issue:`23779`)
- Bug in :meth:`DataFrame.to_json` where using a Tuple as a column or index value and using
orient="columns"
ororient="index"
would produce invalid JSON (:issue:`20500`) - Improve infinity parsing. :meth:`read_csv` now interprets
Infinity
,+Infinity
,-Infinity
as floating point values (:issue:`10065`) - Bug in :meth:`DataFrame.to_csv` where values were truncated when the length of
na_rep
was shorter than the text input data. (:issue:`25099`) - Bug in :func:`DataFrame.to_string` where values were truncated using display options instead of outputting the full content (:issue:`9784`)
- Bug in :meth:`DataFrame.to_json` where a datetime column label would not be written out in ISO format with
orient="table"
(:issue:`28130`) - Bug in :func:`DataFrame.to_parquet` where writing to GCS would fail with engine='fastparquet' if the file did not already exist (:issue:`28326`)
- Bug in :func:`read_hdf` closing stores that it didn't open when Exceptions are raised (:issue:`28699`)
- Bug in :meth:`DataFrame.read_json` where using
orient="index"
would not maintain the order (:issue:`28557`) - Bug in :meth:`DataFrame.to_html` where the length of the
formatters
argument was not verified (:issue:`28469`) - Bug in :meth:`DataFrame.read_excel` with
engine='ods'
whensheet_name
argument references a non-existent sheet (:issue:`27676`) - Bug in :meth:`pandas.io.formats.style.Styler` formatting for floating values not displaying decimals correctly (:issue:`13257`)
- Bug in :meth:`DataFrame.to_html` when using
formatters=<list>
andmax_cols
together. (:issue:`25955`) - Bug in :meth:`Styler.background_gradient` not able to work with dtype
Int64
(:issue:`28869`) - Bug in :meth:`DataFrame.to_clipboard` which did not work reliably in ipython (:issue:`22707`)
- Bug in :func:`read_json` where default encoding was not set to
utf-8
(:issue:`29565`) - Bug in :class:`PythonParser` where str and bytes were being mixed when dealing with the decimal field (:issue:`29650`)
- :meth:`read_gbq` now accepts
progress_bar_type
to display progress bar while the data downloads. (:issue:`29857`) - Bug in :func:`pandas.io.json.json_normalize` where a missing value in the location specified by record_path would raise a
TypeError
(:issue:`30148`)
- Bug in :meth:`Series.plot` not able to plot boolean values (:issue:`23719`)
- Bug in :meth:`DataFrame.plot` not able to plot when no rows (:issue:`27758`)
- Bug in :meth:`DataFrame.plot` producing incorrect legend markers when plotting multiple series on the same axis (:issue:`18222`)
- Bug in :meth:`DataFrame.plot` when
kind='box'
and data contains datetime or timedelta data. These types are now automatically dropped (:issue:`22799`) - Bug in :meth:`DataFrame.plot.line` and :meth:`DataFrame.plot.area` produce wrong xlim in x-axis (:issue:`27686`, :issue:`25160`, :issue:`24784`)
- Bug where :meth:`DataFrame.boxplot` would not accept a color parameter like DataFrame.plot.box (:issue:`26214`)
- Bug in the
xticks
argument being ignored for :meth:`DataFrame.plot.bar` (:issue:`14119`) - :func:`set_option` now validates that the plot backend provided to
'plotting.backend'
implements the backend when the option is set, rather than when a plot is created (:issue:`28163`) - :meth:`DataFrame.plot` now allow a
backend
keyword argument to allow changing between backends in one session (:issue:`28619`). - Bug in color validation incorrectly raising for non-color styles (:issue:`29122`).
- Allow :meth: DataFrame.plot.scatter to plot
objects
anddatetime
type data (:issue:`18755`, :issue:`30391`) - Bug in :meth:`DataFrame.hist`,
xrot=0
does not work withby
and subplots (:issue:`30288`).
- Bug in :meth:`DataFrame.groupby.apply` only showing output from a single group when function returns an :class:`Index` (:issue:`28652`)
- Bug in :meth:`DataFrame.groupby` with multiple groups where an
IndexError
would be raised if any group contained all NA values (:issue:`20519`) - Bug in :meth:`pandas.core.resample.Resampler.size` and :meth:`pandas.core.resample.Resampler.count` returning wrong dtype when used with an empty series or dataframe (:issue:`28427`)
- Bug in :meth:`DataFrame.rolling` not allowing for rolling over datetimes when
axis=1
(:issue:`28192`) - Bug in :meth:`DataFrame.rolling` not allowing rolling over multi-index levels (:issue:`15584`).
- Bug in :meth:`DataFrame.rolling` not allowing rolling on monotonic decreasing time indexes (:issue:`19248`).
- Bug in :meth:`DataFrame.groupby` not offering selection by column name when
axis=1
(:issue:`27614`) - Bug in :meth:`DataFrameGroupby.agg` not able to use lambda function with named aggregation (:issue:`27519`)
- Bug in :meth:`DataFrame.groupby` losing column name information when grouping by a categorical column (:issue:`28787`)
- Remove error raised due to duplicated input functions in named aggregation in :meth:`DataFrame.groupby` and :meth:`Series.groupby`. Previously error will be raised if the same function is applied on the same column and now it is allowed if new assigned names are different. (:issue:`28426`)
- :meth:`SeriesGroupBy.value_counts` will be able to handle the case even when the :class:`Grouper` makes empty groups (:issue: 28479)
- Bug in :meth:`DataFrameGroupBy.rolling().quantile()` ignoring
interpolation
keyword argument (:issue:`28779`) - Bug in :meth:`DataFrame.groupby` where
any
,all
,nunique
and transform functions would incorrectly handle duplicate column labels (:issue:`21668`) - Bug in :meth:`DataFrameGroupBy.agg` with timezone-aware datetime64 column incorrectly casting results to the original dtype (:issue:`29641`)
- Bug in :meth:`DataFrame.groupby` when using axis=1 and having a single level columns index (:issue:`30208`)
- Bug in :meth:`DataFrame.groupby` when using nunique on axis=1 (:issue:`30253`)
- Bug in :meth:`GroupBy.quantile` with multiple list-like q value and integer column names (:issue:`30289`)
- Bug in :meth:`GroupBy.pct_change` and :meth:`SeriesGroupBy.pct_change` causes
TypeError
whenfill_method
isNone
(:issue:`30463`)
- Bug in :meth:`DataFrame.apply` that caused incorrect output with empty :class:`DataFrame` (:issue:`28202`, :issue:`21959`)
- Bug in :meth:`DataFrame.stack` not handling non-unique indexes correctly when creating MultiIndex (:issue:`28301`)
- Bug in :meth:`pivot_table` not returning correct type
float
whenmargins=True
andaggfunc='mean'
(:issue:`24893`) - Bug :func:`merge_asof` could not use :class:`datetime.timedelta` for
tolerance
kwarg (:issue:`28098`) - Bug in :func:`merge`, did not append suffixes correctly with MultiIndex (:issue:`28518`)
- :func:`qcut` and :func:`cut` now handle boolean input (:issue:`20303`)
- Fix to ensure all int dtypes can be used in :func:`merge_asof` when using a tolerance value. Previously every non-int64 type would raise an erroneous
MergeError
(:issue:`28870`). - Better error message in :func:`get_dummies` when columns isn't a list-like value (:issue:`28383`)
- Bug in :meth:`Index.join` that caused infinite recursion error for mismatched
MultiIndex
name orders. (:issue:`25760`, :issue:`28956`) - Bug :meth:`Series.pct_change` where supplying an anchored frequency would throw a ValueError (:issue:`28664`)
- Bug where :meth:`DataFrame.equals` returned True incorrectly in some cases when two DataFrames had the same columns in different orders (:issue:`28839`)
- Bug in :meth:`DataFrame.replace` that caused non-numeric replacer's dtype not respected (:issue:`26632`)
- Bug in :func:`melt` where supplying mixed strings and numeric values for
id_vars
orvalue_vars
would incorrectly raise aValueError
(:issue:`29718`) - Dtypes are now preserved when transposing a
DataFrame
where each column is the same extension dtype (:issue:`30091`) - Bug in :func:`merge_asof` merging on a tz-aware
left_index
andright_on
a tz-aware column (:issue:`29864`)
- Bug in :class:`SparseDataFrame` arithmetic operations incorrectly casting inputs to float (:issue:`28107`)
- Bug in :class:`arrays.PandasArray` when setting a scalar string (:issue:`28118`, :issue:`28150`).
- Bug where nullable integers could not be compared to strings (:issue:`28930`)
- Bug where :class:`DataFrame` constructor raised ValueError with list-like data and
dtype
specified (:issue:`30280`)
- Trying to set the
display.precision
,display.max_rows
ordisplay.max_columns
using :meth:`set_option` to anything but aNone
or a positive int will raise aValueError
(:issue:`23348`) - Using :meth:`DataFrame.replace` with overlapping keys in a nested dictionary will no longer raise, now matching the behavior of a flat dictionary (:issue:`27660`)
- :meth:`DataFrame.to_csv` and :meth:`Series.to_csv` now support dicts as
compression
argument with key'method'
being the compression method and others as additional compression options when the compression method is'zip'
. (:issue:`26023`) - Bug in :meth:`Series.diff` where a boolean series would incorrectly raise a
TypeError
(:issue:`17294`) - :meth:`Series.append` will no longer raise a
TypeError
when passed a tuple ofSeries
(:issue:`28410`) - Fix corrupted error message when calling
pandas.libs._json.encode()
on a 0d array (:issue:`18878`) - Bug in
pd.core.util.hashing.hash_pandas_object
where arrays containing tuples were incorrectly treated as non-hashable (:issue:`28969`) - Bug in :meth:`DataFrame.append` that raised
IndexError
when appending with empty list (:issue:`28769`) - Fix :class:`AbstractHolidayCalendar` to return correct results for years after 2030 (now goes up to 2200) (:issue:`27790`)
- Fixed :class:`IntegerArray` returning
inf
rather thanNaN
for operations dividing by 0 (:issue:`27398`) - Fixed
pow
operations for :class:`IntegerArray` when the other value is0
or1
(:issue:`29997`) - Bug in :meth:`Series.count` raises if use_inf_as_na is enabled (:issue:`29478`)
- Bug in :class:`Index` where a non-hashable name could be set without raising
TypeError
(:issue:`29069`) - Bug in :class:`DataFrame` constructor when passing a 2D
ndarray
and an extension dtype (:issue:`12513`) - Bug in :meth:`DaataFrame.to_csv` when supplied a series with a
dtype="string"
and ana_rep
, thena_rep
was being truncated to 2 characters. (:issue:`29975`) - Bug where :meth:`DataFrame.itertuples` would incorrectly determine whether or not namedtuples could be used for dataframes of 255 columns (:issue:`28282`)