forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathaccessors.py
463 lines (396 loc) · 13.1 KB
/
accessors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
"""Accessors for arrow-backed data."""
from __future__ import annotations
from abc import (
ABCMeta,
abstractmethod,
)
from typing import TYPE_CHECKING
from pandas.compat import (
pa_version_under10p1,
pa_version_under11p0,
)
from pandas.core.dtypes.common import is_list_like
if not pa_version_under10p1:
import pyarrow as pa
import pyarrow.compute as pc
from pandas.core.dtypes.dtypes import ArrowDtype
if TYPE_CHECKING:
from collections.abc import Iterator
from pandas import (
DataFrame,
Series,
)
class ArrowAccessor(metaclass=ABCMeta):
@abstractmethod
def __init__(self, data, validation_msg: str) -> None:
self._data = data
self._validation_msg = validation_msg
self._validate(data)
@abstractmethod
def _is_valid_pyarrow_dtype(self, pyarrow_dtype) -> bool:
pass
def _validate(self, data):
dtype = data.dtype
if not isinstance(dtype, ArrowDtype):
# Raise AttributeError so that inspect can handle non-struct Series.
raise AttributeError(self._validation_msg.format(dtype=dtype))
if not self._is_valid_pyarrow_dtype(dtype.pyarrow_dtype):
# Raise AttributeError so that inspect can handle invalid Series.
raise AttributeError(self._validation_msg.format(dtype=dtype))
@property
def _pa_array(self):
return self._data.array._pa_array
class ListAccessor(ArrowAccessor):
"""
Accessor object for list data properties of the Series values.
Parameters
----------
data : Series
Series containing Arrow list data.
"""
def __init__(self, data=None) -> None:
super().__init__(
data,
validation_msg="Can only use the '.list' accessor with "
"'list[pyarrow]' dtype, not {dtype}.",
)
def _is_valid_pyarrow_dtype(self, pyarrow_dtype) -> bool:
return (
pa.types.is_list(pyarrow_dtype)
or pa.types.is_fixed_size_list(pyarrow_dtype)
or pa.types.is_large_list(pyarrow_dtype)
)
def len(self) -> Series:
"""
Return the length of each list in the Series.
Returns
-------
pandas.Series
The length of each list.
Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... [1, 2, 3],
... [3],
... ],
... dtype=pd.ArrowDtype(pa.list_(
... pa.int64()
... ))
... )
>>> s.list.len()
0 3
1 1
dtype: int32[pyarrow]
"""
from pandas import Series
value_lengths = pc.list_value_length(self._pa_array)
return Series(value_lengths, dtype=ArrowDtype(value_lengths.type))
def __getitem__(self, key: int | slice) -> Series:
"""
Index or slice lists in the Series.
Parameters
----------
key : int | slice
Index or slice of indices to access from each list.
Returns
-------
pandas.Series
The list at requested index.
Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... [1, 2, 3],
... [3],
... ],
... dtype=pd.ArrowDtype(pa.list_(
... pa.int64()
... ))
... )
>>> s.list[0]
0 1
1 3
dtype: int64[pyarrow]
"""
from pandas import Series
if isinstance(key, int):
# TODO: Support negative key but pyarrow does not allow
# element index to be an array.
# if key < 0:
# key = pc.add(key, pc.list_value_length(self._pa_array))
element = pc.list_element(self._pa_array, key)
return Series(element, dtype=ArrowDtype(element.type))
elif isinstance(key, slice):
if pa_version_under11p0:
raise NotImplementedError(
f"List slice not supported by pyarrow {pa.__version__}."
)
# TODO: Support negative start/stop/step, ideally this would be added
# upstream in pyarrow.
start, stop, step = key.start, key.stop, key.step
if start is None:
# TODO: When adding negative step support
# this should be setto last element of array
# when step is negative.
start = 0
if step is None:
step = 1
sliced = pc.list_slice(self._pa_array, start, stop, step)
return Series(sliced, dtype=ArrowDtype(sliced.type))
else:
raise ValueError(f"key must be an int or slice, got {type(key).__name__}")
def __iter__(self) -> Iterator:
raise TypeError(f"'{type(self).__name__}' object is not iterable")
def flatten(self) -> Series:
"""
Flatten list values.
Returns
-------
pandas.Series
The data from all lists in the series flattened.
Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... [1, 2, 3],
... [3],
... ],
... dtype=pd.ArrowDtype(pa.list_(
... pa.int64()
... ))
... )
>>> s.list.flatten()
0 1
1 2
2 3
3 3
dtype: int64[pyarrow]
"""
from pandas import Series
flattened = pc.list_flatten(self._pa_array)
return Series(flattened, dtype=ArrowDtype(flattened.type))
class StructAccessor(ArrowAccessor):
"""
Accessor object for structured data properties of the Series values.
Parameters
----------
data : Series
Series containing Arrow struct data.
"""
def __init__(self, data=None) -> None:
super().__init__(
data,
validation_msg=(
"Can only use the '.struct' accessor with 'struct[pyarrow]' "
"dtype, not {dtype}."
),
)
def _is_valid_pyarrow_dtype(self, pyarrow_dtype) -> bool:
return pa.types.is_struct(pyarrow_dtype)
@property
def dtypes(self) -> Series:
"""
Return the dtype object of each child field of the struct.
Returns
-------
pandas.Series
The data type of each child field.
Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... {"version": 1, "project": "pandas"},
... {"version": 2, "project": "pandas"},
... {"version": 1, "project": "numpy"},
... ],
... dtype=pd.ArrowDtype(pa.struct(
... [("version", pa.int64()), ("project", pa.string())]
... ))
... )
>>> s.struct.dtypes
version int64[pyarrow]
project string[pyarrow]
dtype: object
"""
from pandas import (
Index,
Series,
)
pa_type = self._data.dtype.pyarrow_dtype
types = [ArrowDtype(struct.type) for struct in pa_type]
names = [struct.name for struct in pa_type]
return Series(types, index=Index(names))
def field(
self,
name_or_index: list[str]
| list[bytes]
| list[int]
| pc.Expression
| bytes
| str
| int,
) -> Series:
"""
Extract a child field of a struct as a Series.
Parameters
----------
name_or_index : str | int
Name or index of the child field to extract.
Returns
-------
pandas.Series
The data corresponding to the selected child field.
Notes
-----
The name of the resulting Series will be set using the following
rules:
- For string, bytes, or integer `name_or_index` (or a list of these, for
a nested selection), the Series name is set to the selected
field's name.
- For a :class:`pyarrow.compute.Expression`, this is set to
the string form of the expression.
See Also
--------
Series.struct.explode : Return all child fields as a DataFrame.
Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... {"version": 1, "project": "pandas"},
... {"version": 2, "project": "pandas"},
... {"version": 1, "project": "numpy"},
... ],
... dtype=pd.ArrowDtype(pa.struct(
... [("version", pa.int64()), ("project", pa.string())]
... ))
... )
Extract by field name.
>>> s.struct.field("project")
0 pandas
1 pandas
2 numpy
Name: project, dtype: string[pyarrow]
Extract by field index.
>>> s.struct.field(0)
0 1
1 2
2 1
Name: version, dtype: int64[pyarrow]
Or an expression
>>> import pyarrow.compute as pc
>>> s.struct.field(pc.field("project"))
0 pandas
1 pandas
2 numpy
Name: project, dtype: string[pyarrow]
For nested struct types, you can pass a list of values to index
multiple levels:
>>> version_type = pa.struct([
... ("major", pa.int64()),
... ("minor", pa.int64()),
... ])
>>> s = pd.Series(
... [
... {"version": {"major": 1, "minor": 5}, "project": "pandas"},
... {"version": {"major": 2, "minor": 1}, "project": "pandas"},
... {"version": {"major": 1, "minor": 26}, "project": "numpy"},
... ],
... dtype=pd.ArrowDtype(pa.struct(
... [("version", version_type), ("project", pa.string())]
... ))
... )
>>> s.struct.field(["version", "minor"])
0 5
1 1
2 26
Name: minor, dtype: int64[pyarrow]
>>> s.struct.field([0, 0])
0 1
1 2
2 1
Name: major, dtype: int64[pyarrow]
"""
from pandas import Series
def get_name(
level_name_or_index: list[str]
| list[bytes]
| list[int]
| pc.Expression
| bytes
| str
| int,
data: pa.ChunkedArray,
):
if isinstance(level_name_or_index, int):
index = data.type.field(level_name_or_index).name
elif isinstance(level_name_or_index, (str, bytes)):
index = level_name_or_index
elif isinstance(level_name_or_index, pc.Expression):
index = str(level_name_or_index)
elif is_list_like(level_name_or_index):
# For nested input like [2, 1, 2]
# iteratively get the struct and field name. The last
# one is used for the name of the index.
level_name_or_index = list(reversed(level_name_or_index))
selected = data
while level_name_or_index:
name_or_index = level_name_or_index.pop()
name = get_name(name_or_index, selected)
selected = selected.type.field(selected.type.get_field_index(name))
index = selected.name
return index
else:
raise ValueError(
"name_or_index must be an int, str, bytes, "
"pyarrow.compute.Expression, or list of those"
)
return index
pa_arr = self._data.array._pa_array
name = get_name(name_or_index, pa_arr)
field_arr = pc.struct_field(pa_arr, name_or_index)
return Series(
field_arr,
dtype=ArrowDtype(field_arr.type),
index=self._data.index,
name=name,
)
def explode(self) -> DataFrame:
"""
Extract all child fields of a struct as a DataFrame.
Returns
-------
pandas.DataFrame
The data corresponding to all child fields.
See Also
--------
Series.struct.field : Return a single child field as a Series.
Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... {"version": 1, "project": "pandas"},
... {"version": 2, "project": "pandas"},
... {"version": 1, "project": "numpy"},
... ],
... dtype=pd.ArrowDtype(pa.struct(
... [("version", pa.int64()), ("project", pa.string())]
... ))
... )
>>> s.struct.explode()
version project
0 1 pandas
1 2 pandas
2 1 numpy
"""
from pandas import concat
pa_type = self._pa_array.type
return concat(
[self.field(i) for i in range(pa_type.num_fields)], axis="columns"
)