forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathperiod.py
944 lines (788 loc) · 31.5 KB
/
period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
from datetime import datetime, timedelta
import weakref
import numpy as np
from pandas._libs import index as libindex
from pandas._libs.tslibs import NaT, frequencies as libfrequencies, iNaT, resolution
from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period
from pandas.util._decorators import Appender, Substitution, cache_readonly
from pandas.core.dtypes.common import (
ensure_platform_int,
is_bool_dtype,
is_datetime64_any_dtype,
is_float,
is_float_dtype,
is_integer,
is_integer_dtype,
pandas_dtype,
)
from pandas.core.accessor import delegate_names
from pandas.core.algorithms import unique1d
from pandas.core.arrays.period import PeriodArray, period_array, validate_dtype_freq
from pandas.core.base import _shared_docs
import pandas.core.common as com
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import (
_index_shared_docs,
ensure_index,
maybe_extract_name,
)
from pandas.core.indexes.datetimelike import (
DatetimeIndexOpsMixin,
DatetimelikeDelegateMixin,
)
from pandas.core.indexes.datetimes import DatetimeIndex, Index, Int64Index
from pandas.core.missing import isna
from pandas.core.ops import get_op_result_name
from pandas.core.tools.datetimes import DateParseError, parse_time_string
from pandas.tseries import frequencies
from pandas.tseries.offsets import DateOffset, Tick
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
_index_doc_kwargs.update(dict(target_klass="PeriodIndex or list of Periods"))
# --- Period index sketch
def _new_PeriodIndex(cls, **d):
# GH13277 for unpickling
values = d.pop("data")
if values.dtype == "int64":
freq = d.pop("freq", None)
values = PeriodArray(values, freq=freq)
return cls._simple_new(values, **d)
else:
return cls(values, **d)
class PeriodDelegateMixin(DatetimelikeDelegateMixin):
"""
Delegate from PeriodIndex to PeriodArray.
"""
_delegate_class = PeriodArray
_delegated_properties = PeriodArray._datetimelike_ops
_delegated_methods = set(PeriodArray._datetimelike_methods) | {
"_addsub_int_array",
"strftime",
}
_raw_properties = {"is_leap_year"}
@delegate_names(PeriodArray, PeriodDelegateMixin._delegated_properties, typ="property")
@delegate_names(
PeriodArray, PeriodDelegateMixin._delegated_methods, typ="method", overwrite=True
)
class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
"""
Immutable ndarray holding ordinal values indicating regular periods in
time such as particular years, quarters, months, etc.
Index keys are boxed to Period objects which carries the metadata (eg,
frequency information).
Parameters
----------
data : array-like (1d int np.ndarray or PeriodArray), optional
Optional period-like data to construct index with
copy : bool
Make a copy of input ndarray
freq : str or period object, optional
One of pandas period strings or corresponding objects
year : int, array, or Series, default None
month : int, array, or Series, default None
quarter : int, array, or Series, default None
day : int, array, or Series, default None
hour : int, array, or Series, default None
minute : int, array, or Series, default None
second : int, array, or Series, default None
tz : object, default None
Timezone for converting datetime64 data to Periods
dtype : str or PeriodDtype, default None
Attributes
----------
day
dayofweek
dayofyear
days_in_month
daysinmonth
end_time
freq
freqstr
hour
is_leap_year
minute
month
quarter
qyear
second
start_time
week
weekday
weekofyear
year
Methods
-------
asfreq
strftime
to_timestamp
See Also
--------
Index : The base pandas Index type.
Period : Represents a period of time.
DatetimeIndex : Index with datetime64 data.
TimedeltaIndex : Index of timedelta64 data.
period_range : Create a fixed-frequency PeriodIndex.
Examples
--------
>>> idx = pd.PeriodIndex(year=year_arr, quarter=q_arr)
"""
_typ = "periodindex"
_attributes = ["name", "freq"]
# define my properties & methods for delegation
_is_numeric_dtype = False
_infer_as_myclass = True
_data: PeriodArray
_engine_type = libindex.PeriodEngine
_supports_partial_string_indexing = True
# ------------------------------------------------------------------------
# Index Constructors
def __new__(
cls,
data=None,
ordinal=None,
freq=None,
tz=None,
dtype=None,
copy=False,
name=None,
**fields,
):
valid_field_set = {
"year",
"month",
"day",
"quarter",
"hour",
"minute",
"second",
}
if not set(fields).issubset(valid_field_set):
argument = list(set(fields) - valid_field_set)[0]
raise TypeError(f"__new__() got an unexpected keyword argument {argument}")
name = maybe_extract_name(name, data, cls)
if data is None and ordinal is None:
# range-based.
data, freq2 = PeriodArray._generate_range(None, None, None, freq, fields)
# PeriodArray._generate range does validation that fields is
# empty when really using the range-based constructor.
freq = freq2
data = PeriodArray(data, freq=freq)
else:
freq = validate_dtype_freq(dtype, freq)
# PeriodIndex allow PeriodIndex(period_index, freq=different)
# Let's not encourage that kind of behavior in PeriodArray.
if freq and isinstance(data, cls) and data.freq != freq:
# TODO: We can do some of these with no-copy / coercion?
# e.g. D -> 2D seems to be OK
data = data.asfreq(freq)
if data is None and ordinal is not None:
# we strangely ignore `ordinal` if data is passed.
ordinal = np.asarray(ordinal, dtype=np.int64)
data = PeriodArray(ordinal, freq)
else:
# don't pass copy here, since we copy later.
data = period_array(data=data, freq=freq)
if copy:
data = data.copy()
return cls._simple_new(data, name=name)
@classmethod
def _simple_new(cls, values, name=None, freq=None, **kwargs):
"""
Create a new PeriodIndex.
Parameters
----------
values : PeriodArray, PeriodIndex, Index[int64], ndarray[int64]
Values that can be converted to a PeriodArray without inference
or coercion.
"""
# TODO: raising on floats is tested, but maybe not useful.
# Should the callers know not to pass floats?
# At the very least, I think we can ensure that lists aren't passed.
if isinstance(values, list):
values = np.asarray(values)
if is_float_dtype(values):
raise TypeError("PeriodIndex._simple_new does not accept floats.")
if freq:
freq = Period._maybe_convert_freq(freq)
values = PeriodArray(values, freq=freq)
if not isinstance(values, PeriodArray):
raise TypeError("PeriodIndex._simple_new only accepts PeriodArray")
result = object.__new__(cls)
result._data = values
# For groupby perf. See note in indexes/base about _index_data
result._index_data = values._data
result.name = name
result._no_setting_name = False
result._reset_identity()
return result
# ------------------------------------------------------------------------
# Data
@property
def values(self):
return np.asarray(self)
@property
def freq(self) -> DateOffset:
return self._data.freq
def _shallow_copy(self, values=None, **kwargs):
# TODO: simplify, figure out type of values
if values is None:
values = self._data
if isinstance(values, type(self)):
values = values._values
if not isinstance(values, PeriodArray):
if isinstance(values, np.ndarray) and is_integer_dtype(values.dtype):
values = PeriodArray(values, freq=self.freq)
else:
# in particular, I would like to avoid period_array here.
# Some people seem to be calling use with unexpected types
# Index.difference -> ndarray[Period]
# DatetimelikeIndexOpsMixin.repeat -> ndarray[ordinal]
# I think that once all of Datetime* are EAs, we can simplify
# this quite a bit.
values = period_array(values, freq=self.freq)
# We don't allow changing `freq` in _shallow_copy.
validate_dtype_freq(self.dtype, kwargs.get("freq"))
attributes = self._get_attributes_dict()
attributes.update(kwargs)
if not len(values) and "dtype" not in kwargs:
attributes["dtype"] = self.dtype
return self._simple_new(values, **attributes)
def _shallow_copy_with_infer(self, values=None, **kwargs):
""" we always want to return a PeriodIndex """
return self._shallow_copy(values=values, **kwargs)
@property
def _box_func(self):
"""Maybe box an ordinal or Period"""
# TODO(DatetimeArray): Avoid double-boxing
# PeriodArray takes care of boxing already, so we need to check
# whether we're given an ordinal or a Period. It seems like some
# places outside of indexes/period.py are calling this _box_func,
# but passing data that's already boxed.
def func(x):
if isinstance(x, Period) or x is NaT:
return x
else:
return Period._from_ordinal(ordinal=x, freq=self.freq)
return func
def _maybe_convert_timedelta(self, other):
"""
Convert timedelta-like input to an integer multiple of self.freq
Parameters
----------
other : timedelta, np.timedelta64, DateOffset, int, np.ndarray
Returns
-------
converted : int, np.ndarray[int64]
Raises
------
IncompatibleFrequency : if the input cannot be written as a multiple
of self.freq. Note IncompatibleFrequency subclasses ValueError.
"""
if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)):
offset = frequencies.to_offset(self.freq.rule_code)
if isinstance(offset, Tick):
# _check_timedeltalike_freq_compat will raise if incompatible
delta = self._data._check_timedeltalike_freq_compat(other)
return delta
elif isinstance(other, DateOffset):
freqstr = other.rule_code
base = libfrequencies.get_base_alias(freqstr)
if base == self.freq.rule_code:
return other.n
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr
)
raise IncompatibleFrequency(msg)
elif is_integer(other):
# integer is passed to .shift via
# _add_datetimelike_methods basically
# but ufunc may pass integer to _add_delta
return other
# raise when input doesn't have freq
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__, own_freq=self.freqstr, other_freq=None
)
raise IncompatibleFrequency(msg)
# ------------------------------------------------------------------------
# Rendering Methods
def _format_native_types(self, na_rep="NaT", quoting=None, **kwargs):
# just dispatch, return ndarray
return self._data._format_native_types(na_rep=na_rep, quoting=quoting, **kwargs)
def _mpl_repr(self):
# how to represent ourselves to matplotlib
return self.astype(object).values
@property
def _formatter_func(self):
return self.array._formatter(boxed=False)
# ------------------------------------------------------------------------
# Indexing
@cache_readonly
def _engine(self):
# To avoid a reference cycle, pass a weakref of self to _engine_type.
period = weakref.ref(self)
return self._engine_type(period, len(self))
@Appender(_index_shared_docs["contains"])
def __contains__(self, key) -> bool:
if isinstance(key, Period):
if key.freq != self.freq:
return False
else:
return key.ordinal in self._engine
else:
try:
self.get_loc(key)
return True
except (TypeError, KeyError):
# TypeError can be reached if we pass a tuple that is not hashable
return False
@cache_readonly
def _int64index(self):
return Int64Index._simple_new(self.asi8, name=self.name)
# ------------------------------------------------------------------------
# Index Methods
def _coerce_scalar_to_index(self, item):
"""
we need to coerce a scalar to a compat for our index type
Parameters
----------
item : scalar item to coerce
"""
return PeriodIndex([item], **self._get_attributes_dict())
def __array__(self, dtype=None):
if is_integer_dtype(dtype):
return self.asi8
else:
return self.astype(object).values
def __array_wrap__(self, result, context=None):
"""
Gets called after a ufunc. Needs additional handling as
PeriodIndex stores internal data as int dtype
Replace this to __numpy_ufunc__ in future version
"""
if isinstance(context, tuple) and len(context) > 0:
func = context[0]
if func is np.add:
pass
elif func is np.subtract:
name = self.name
left = context[1][0]
right = context[1][1]
if isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex):
name = left.name if left.name == right.name else None
return Index(result, name=name)
elif isinstance(left, Period) or isinstance(right, Period):
return Index(result, name=name)
elif isinstance(func, np.ufunc):
if "M->M" not in func.types:
msg = f"ufunc '{func.__name__}' not supported for the PeriodIndex"
# This should be TypeError, but TypeError cannot be raised
# from here because numpy catches.
raise ValueError(msg)
if is_bool_dtype(result):
return result
# the result is object dtype array of Period
# cannot pass _simple_new as it is
return type(self)(result, freq=self.freq, name=self.name)
def asof_locs(self, where, mask):
"""
where : array of timestamps
mask : array of booleans where data is not NA
"""
where_idx = where
if isinstance(where_idx, DatetimeIndex):
where_idx = PeriodIndex(where_idx.values, freq=self.freq)
locs = self._ndarray_values[mask].searchsorted(
where_idx._ndarray_values, side="right"
)
locs = np.where(locs > 0, locs - 1, 0)
result = np.arange(len(self))[mask].take(locs)
first = mask.argmax()
result[
(locs == 0) & (where_idx._ndarray_values < self._ndarray_values[first])
] = -1
return result
@Appender(_index_shared_docs["astype"])
def astype(self, dtype, copy=True, how="start"):
dtype = pandas_dtype(dtype)
if is_datetime64_any_dtype(dtype):
# 'how' is index-specific, isn't part of the EA interface.
tz = getattr(dtype, "tz", None)
return self.to_timestamp(how=how).tz_localize(tz)
# TODO: should probably raise on `how` here, so we don't ignore it.
return super().astype(dtype, copy=copy)
@Substitution(klass="PeriodIndex")
@Appender(_shared_docs["searchsorted"])
def searchsorted(self, value, side="left", sorter=None):
if isinstance(value, Period):
if value.freq != self.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=value.freqstr,
)
raise IncompatibleFrequency(msg)
value = value.ordinal
elif isinstance(value, str):
try:
value = Period(value, freq=self.freq).ordinal
except DateParseError:
raise KeyError(f"Cannot interpret '{value}' as period")
return self._ndarray_values.searchsorted(value, side=side, sorter=sorter)
@property
def is_all_dates(self) -> bool:
return True
@property
def is_full(self) -> bool:
"""
Returns True if this PeriodIndex is range-like in that all Periods
between start and end are present, in order.
"""
if len(self) == 0:
return True
if not self.is_monotonic:
raise ValueError("Index is not monotonic")
values = self.asi8
return ((values[1:] - values[:-1]) < 2).all()
@property
def inferred_type(self) -> str:
# b/c data is represented as ints make sure we can't have ambiguous
# indexing
return "period"
def get_value(self, series, key):
"""
Fast lookup of value from 1-dimensional ndarray. Only use this if you
know what you're doing
"""
s = com.values_from_object(series)
try:
return com.maybe_box(self, super().get_value(s, key), series, key)
except (KeyError, IndexError):
if isinstance(key, str):
asdt, parsed, reso = parse_time_string(key, self.freq)
grp = resolution.Resolution.get_freq_group(reso)
freqn = resolution.get_freq_group(self.freq)
vals = self._ndarray_values
# if our data is higher resolution than requested key, slice
if grp < freqn:
iv = Period(asdt, freq=(grp, 1))
ord1 = iv.asfreq(self.freq, how="S").ordinal
ord2 = iv.asfreq(self.freq, how="E").ordinal
if ord2 < vals[0] or ord1 > vals[-1]:
raise KeyError(key)
pos = np.searchsorted(self._ndarray_values, [ord1, ord2])
key = slice(pos[0], pos[1] + 1)
return series[key]
elif grp == freqn:
key = Period(asdt, freq=self.freq).ordinal
return com.maybe_box(
self, self._int64index.get_value(s, key), series, key
)
else:
raise KeyError(key)
period = Period(key, self.freq)
key = period.value if isna(period) else period.ordinal
return com.maybe_box(self, self._int64index.get_value(s, key), series, key)
@Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs)
def get_indexer(self, target, method=None, limit=None, tolerance=None):
target = ensure_index(target)
if hasattr(target, "freq") and target.freq != self.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=target.freqstr,
)
raise IncompatibleFrequency(msg)
if isinstance(target, PeriodIndex):
target = target.asi8
self_index = self._int64index
else:
self_index = self
if tolerance is not None:
tolerance = self._convert_tolerance(tolerance, target)
return Index.get_indexer(self_index, target, method, limit, tolerance)
@Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs)
def get_indexer_non_unique(self, target):
target = ensure_index(target)
if isinstance(target, PeriodIndex):
target = target.asi8
if hasattr(target, "freq") and target.freq != self.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=target.freqstr,
)
raise IncompatibleFrequency(msg)
indexer, missing = self._int64index.get_indexer_non_unique(target)
return ensure_platform_int(indexer), missing
def _get_unique_index(self, dropna=False):
"""
wrap Index._get_unique_index to handle NaT
"""
res = super()._get_unique_index(dropna=dropna)
if dropna:
res = res.dropna()
return res
@Appender(Index.unique.__doc__)
def unique(self, level=None):
# override the Index.unique method for performance GH#23083
if level is not None:
# this should never occur, but is retained to make the signature
# match Index.unique
self._validate_index_level(level)
values = self._ndarray_values
result = unique1d(values)
return self._shallow_copy(result)
def get_loc(self, key, method=None, tolerance=None):
"""
Get integer location for requested label
Returns
-------
loc : int
"""
try:
return self._engine.get_loc(key)
except KeyError:
if is_integer(key):
raise
try:
asdt, parsed, reso = parse_time_string(key, self.freq)
key = asdt
except TypeError:
pass
except DateParseError:
# A string with invalid format
raise KeyError(f"Cannot interpret '{key}' as period")
try:
key = Period(key, freq=self.freq)
except ValueError:
# we cannot construct the Period
# as we have an invalid type
raise KeyError(key)
try:
ordinal = iNaT if key is NaT else key.ordinal
if tolerance is not None:
tolerance = self._convert_tolerance(tolerance, np.asarray(key))
return self._int64index.get_loc(ordinal, method, tolerance)
except KeyError:
raise KeyError(key)
def _maybe_cast_slice_bound(self, label, side, kind):
"""
If label is a string or a datetime, cast it to Period.ordinal according
to resolution.
Parameters
----------
label : object
side : {'left', 'right'}
kind : {'ix', 'loc', 'getitem'}
Returns
-------
bound : Period or object
Notes
-----
Value of `side` parameter should be validated in caller.
"""
assert kind in ["ix", "loc", "getitem"]
if isinstance(label, datetime):
return Period(label, freq=self.freq)
elif isinstance(label, str):
try:
_, parsed, reso = parse_time_string(label, self.freq)
bounds = self._parsed_string_to_bounds(reso, parsed)
return bounds[0 if side == "left" else 1]
except ValueError:
# string cannot be parsed as datetime-like
# TODO: we need tests for this case
raise KeyError(label)
elif is_integer(label) or is_float(label):
self._invalid_indexer("slice", label)
return label
def _parsed_string_to_bounds(self, reso, parsed):
if reso == "year":
t1 = Period(year=parsed.year, freq="A")
elif reso == "month":
t1 = Period(year=parsed.year, month=parsed.month, freq="M")
elif reso == "quarter":
q = (parsed.month - 1) // 3 + 1
t1 = Period(year=parsed.year, quarter=q, freq="Q-DEC")
elif reso == "day":
t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, freq="D")
elif reso == "hour":
t1 = Period(
year=parsed.year,
month=parsed.month,
day=parsed.day,
hour=parsed.hour,
freq="H",
)
elif reso == "minute":
t1 = Period(
year=parsed.year,
month=parsed.month,
day=parsed.day,
hour=parsed.hour,
minute=parsed.minute,
freq="T",
)
elif reso == "second":
t1 = Period(
year=parsed.year,
month=parsed.month,
day=parsed.day,
hour=parsed.hour,
minute=parsed.minute,
second=parsed.second,
freq="S",
)
else:
raise KeyError(reso)
return (t1.asfreq(self.freq, how="start"), t1.asfreq(self.freq, how="end"))
def _get_string_slice(self, key):
if not self.is_monotonic:
raise ValueError("Partial indexing only valid for ordered time series")
key, parsed, reso = parse_time_string(key, self.freq)
grp = resolution.Resolution.get_freq_group(reso)
freqn = resolution.get_freq_group(self.freq)
if reso in ["day", "hour", "minute", "second"] and not grp < freqn:
raise KeyError(key)
t1, t2 = self._parsed_string_to_bounds(reso, parsed)
return slice(
self.searchsorted(t1.ordinal, side="left"),
self.searchsorted(t2.ordinal, side="right"),
)
def _convert_tolerance(self, tolerance, target):
tolerance = DatetimeIndexOpsMixin._convert_tolerance(self, tolerance, target)
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError("list-like tolerance size must match target index size")
return self._maybe_convert_timedelta(tolerance)
def insert(self, loc, item):
if not isinstance(item, Period) or self.freq != item.freq:
return self.astype(object).insert(loc, item)
idx = np.concatenate(
(self[:loc].asi8, np.array([item.ordinal]), self[loc:].asi8)
)
return self._shallow_copy(idx)
def join(self, other, how="left", level=None, return_indexers=False, sort=False):
"""
See Index.join
"""
self._assert_can_do_setop(other)
if not isinstance(other, PeriodIndex):
return self.astype(object).join(
other, how=how, level=level, return_indexers=return_indexers, sort=sort
)
result = Int64Index.join(
self,
other,
how=how,
level=level,
return_indexers=return_indexers,
sort=sort,
)
if return_indexers:
result, lidx, ridx = result
return self._apply_meta(result), lidx, ridx
return self._apply_meta(result)
@Appender(Index.intersection.__doc__)
def intersection(self, other, sort=False):
return Index.intersection(self, other, sort=sort)
def _assert_can_do_setop(self, other):
super()._assert_can_do_setop(other)
# *Can't* use PeriodIndexes of different freqs
# *Can* use PeriodIndex/DatetimeIndex
if isinstance(other, PeriodIndex) and self.freq != other.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr
)
raise IncompatibleFrequency(msg)
def _wrap_setop_result(self, other, result):
name = get_op_result_name(self, other)
result = self._apply_meta(result)
result.name = name
return result
def _apply_meta(self, rawarr):
if not isinstance(rawarr, PeriodIndex):
rawarr = PeriodIndex._simple_new(rawarr, freq=self.freq, name=self.name)
return rawarr
def __setstate__(self, state):
"""Necessary for making this object picklable"""
if isinstance(state, dict):
super().__setstate__(state)
elif isinstance(state, tuple):
# < 0.15 compat
if len(state) == 2:
nd_state, own_state = state
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
# backcompat
freq = Period._maybe_convert_freq(own_state[1])
else: # pragma: no cover
data = np.empty(state)
np.ndarray.__setstate__(self, state)
freq = None # ?
data = PeriodArray(data, freq=freq)
self._data = data
else:
raise Exception("invalid pickle state")
_unpickle_compat = __setstate__
def memory_usage(self, deep=False):
result = super().memory_usage(deep=deep)
if hasattr(self, "_cache") and "_int64index" in self._cache:
result += self._int64index.memory_usage(deep=deep)
return result
PeriodIndex._add_comparison_ops()
PeriodIndex._add_numeric_methods_disabled()
PeriodIndex._add_logical_methods_disabled()
PeriodIndex._add_datetimelike_methods()
def period_range(
start=None, end=None, periods=None, freq=None, name=None
) -> PeriodIndex:
"""
Return a fixed frequency PeriodIndex.
The day (calendar) is the default frequency.
Parameters
----------
start : str or period-like, default None
Left bound for generating periods.
end : str or period-like, default None
Right bound for generating periods.
periods : int, default None
Number of periods to generate.
freq : str or DateOffset, optional
Frequency alias. By default the freq is taken from `start` or `end`
if those are Period objects. Otherwise, the default is ``"D"`` for
daily frequency.
name : str, default None
Name of the resulting PeriodIndex.
Returns
-------
PeriodIndex
Notes
-----
Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
must be specified.
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05',
'2017-06', '2017-06', '2017-07', '2017-08', '2017-09',
'2017-10', '2017-11', '2017-12', '2018-01'],
dtype='period[M]', freq='M')
If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor
endpoints for a ``PeriodIndex`` with frequency matching that of the
``period_range`` constructor.
>>> pd.period_range(start=pd.Period('2017Q1', freq='Q'),
... end=pd.Period('2017Q2', freq='Q'), freq='M')
PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'],
dtype='period[M]', freq='M')
"""
if com.count_not_none(start, end, periods) != 2:
raise ValueError(
"Of the three parameters: start, end, and periods, "
"exactly two must be specified"
)
if freq is None and (not isinstance(start, Period) and not isinstance(end, Period)):
freq = "D"
data, freq = PeriodArray._generate_range(start, end, periods, freq, fields={})
data = PeriodArray(data, freq=freq)
return PeriodIndex(data, name=name)