forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathperiod.py
120 lines (79 loc) · 3.11 KB
/
period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from pandas import (
DataFrame, Period, PeriodIndex, Series, date_range, period_range)
class PeriodProperties(object):
params = (['M', 'min'],
['year', 'month', 'day', 'hour', 'minute', 'second',
'is_leap_year', 'quarter', 'qyear', 'week', 'daysinmonth',
'dayofweek', 'dayofyear', 'start_time', 'end_time'])
param_names = ['freq', 'attr']
def setup(self, freq, attr):
self.per = Period('2012-06-01', freq=freq)
def time_property(self, freq, attr):
getattr(self.per, attr)
class PeriodUnaryMethods(object):
params = ['M', 'min']
param_names = ['freq']
def setup(self, freq):
self.per = Period('2012-06-01', freq=freq)
def time_to_timestamp(self, freq):
self.per.to_timestamp()
def time_now(self, freq):
self.per.now(freq)
def time_asfreq(self, freq):
self.per.asfreq('A')
class PeriodIndexConstructor(object):
params = ['D']
param_names = ['freq']
def setup(self, freq):
self.rng = date_range('1985', periods=1000)
self.rng2 = date_range('1985', periods=1000).to_pydatetime()
self.ints = list(range(2000, 3000))
def time_from_date_range(self, freq):
PeriodIndex(self.rng, freq=freq)
def time_from_pydatetime(self, freq):
PeriodIndex(self.rng2, freq=freq)
def time_from_ints(self, freq):
PeriodIndex(self.ints, freq=freq)
class DataFramePeriodColumn(object):
def setup(self):
self.rng = period_range(start='1/1/1990', freq='S', periods=20000)
self.df = DataFrame(index=range(len(self.rng)))
def time_setitem_period_column(self):
self.df['col'] = self.rng
def time_set_index(self):
# GH#21582 limited by comparisons of Period objects
self.df['col2'] = self.rng
self.df.set_index('col2', append=True)
class Algorithms(object):
params = ['index', 'series']
param_names = ['typ']
def setup(self, typ):
data = [Period('2011-01', freq='M'), Period('2011-02', freq='M'),
Period('2011-03', freq='M'), Period('2011-04', freq='M')]
if typ == 'index':
self.vector = PeriodIndex(data * 1000, freq='M')
elif typ == 'series':
self.vector = Series(data * 1000)
def time_drop_duplicates(self, typ):
self.vector.drop_duplicates()
def time_value_counts(self, typ):
self.vector.value_counts()
class Indexing(object):
def setup(self):
self.index = period_range(start='1985', periods=1000, freq='D')
self.series = Series(range(1000), index=self.index)
self.period = self.index[500]
def time_get_loc(self):
self.index.get_loc(self.period)
def time_shape(self):
self.index.shape
def time_shallow_copy(self):
self.index._shallow_copy()
def time_series_loc(self):
self.series.loc[self.period]
def time_align(self):
DataFrame({'a': self.series, 'b': self.series[:500]})
def time_intersection(self):
self.index[:750].intersection(self.index[250:])
def time_unique(self):
self.index.unique()