{{ header }}
Pandas provides data structures for efficiently storing sparse data.
These are not necessarily sparse in the typical "mostly 0". Rather, you can view these
objects as being "compressed" where any data matching a specific value (NaN
/ missing value, though any value
can be chosen, including 0) is omitted. The compressed values are not actually stored in the array.
.. ipython:: python arr = np.random.randn(10) arr[2:-2] = np.nan ts = pd.Series(pd.SparseArray(arr)) ts
Notice the dtype, Sparse[float64, nan]
. The nan
means that elements in the
array that are nan
aren't actually stored, only the non-nan
elements are.
Those non-nan
elements have a float64
dtype.
The sparse objects exist for memory efficiency reasons. Suppose you had a
large, mostly NA DataFrame
:
.. ipython:: python df = pd.DataFrame(np.random.randn(10000, 4)) df.iloc[:9998] = np.nan sdf = df.astype(pd.SparseDtype("float", np.nan)) sdf.head() sdf.dtypes sdf.sparse.density
As you can see, the density (% of values that have not been "compressed") is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter.
.. ipython:: python 'dense : {:0.2f} bytes'.format(df.memory_usage().sum() / 1e3) 'sparse: {:0.2f} bytes'.format(sdf.memory_usage().sum() / 1e3)
Functionally, their behavior should be nearly identical to their dense counterparts.
:class:`SparseArray` is a :class:`~pandas.api.extensions.ExtensionArray`
for storing an array of sparse values (see :ref:`basics.dtypes` for more
on extension arrays). It is a 1-dimensional ndarray-like object storing
only values distinct from the fill_value
:
.. ipython:: python arr = np.random.randn(10) arr[2:5] = np.nan arr[7:8] = np.nan sparr = pd.SparseArray(arr) sparr
A sparse array can be converted to a regular (dense) ndarray with :meth:`numpy.asarray`
.. ipython:: python np.asarray(sparr)
The :attr:`SparseArray.dtype` property stores two pieces of information
- The dtype of the non-sparse values
- The scalar fill value
.. ipython:: python sparr.dtype
A :class:`SparseDtype` may be constructed by passing each of these
.. ipython:: python pd.SparseDtype(np.dtype('datetime64[ns]'))
The default fill value for a given NumPy dtype is the "missing" value for that dtype, though it may be overridden.
.. ipython:: python pd.SparseDtype(np.dtype('datetime64[ns]'), fill_value=pd.Timestamp('2017-01-01'))
Finally, the string alias 'Sparse[dtype]'
may be used to specify a sparse dtype
in many places
.. ipython:: python pd.array([1, 0, 0, 2], dtype='Sparse[int]')
.. versionadded:: 0.24.0
Pandas provides a .sparse
accessor, similar to .str
for string data, .cat
for categorical data, and .dt
for datetime-like data. This namespace provides
attributes and methods that are specific to sparse data.
.. ipython:: python s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]") s.sparse.density s.sparse.fill_value
This accessor is available only on data with SparseDtype
, and on the :class:`Series`
class itself for creating a Series with sparse data from a scipy COO matrix with.
.. versionadded:: 0.25.0
A .sparse
accessor has been added for :class:`DataFrame` as well.
See :ref:`api.frame.sparse` for more.
You can apply NumPy ufuncs
to SparseArray
and get a SparseArray
as a result.
.. ipython:: python arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan]) np.abs(arr)
The ufunc is also applied to fill_value
. This is needed to get
the correct dense result.
.. ipython:: python arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1) np.abs(arr) np.abs(arr).to_dense()
Note
SparseSeries
and SparseDataFrame
were removed in pandas 1.0.0. This migration
guide is present to aid in migrating from previous versions.
In older versions of pandas, the SparseSeries
and SparseDataFrame
classes (documented below)
were the preferred way to work with sparse data. With the advent of extension arrays, these subclasses
are no longer needed. Their purpose is better served by using a regular Series or DataFrame with
sparse values instead.
Note
There's no performance or memory penalty to using a Series or DataFrame with sparse values, rather than a SparseSeries or SparseDataFrame.
This section provides some guidance on migrating your code to the new style. As a reminder, you can use the python warnings module to control warnings. But we recommend modifying your code, rather than ignoring the warning.
Construction
From an array-like, use the regular :class:`Series` or :class:`DataFrame` constructors with :class:`SparseArray` values.
# Previous way
>>> pd.SparseDataFrame({"A": [0, 1]})
.. ipython:: python # New way pd.DataFrame({"A": pd.SparseArray([0, 1])})
From a SciPy sparse matrix, use :meth:`DataFrame.sparse.from_spmatrix`,
# Previous way
>>> from scipy import sparse
>>> mat = sparse.eye(3)
>>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C'])
.. ipython:: python # New way from scipy import sparse mat = sparse.eye(3) df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C']) df.dtypes
Conversion
From sparse to dense, use the .sparse
accessors
.. ipython:: python df.sparse.to_dense() df.sparse.to_coo()
From dense to sparse, use :meth:`DataFrame.astype` with a :class:`SparseDtype`.
.. ipython:: python dense = pd.DataFrame({"A": [1, 0, 0, 1]}) dtype = pd.SparseDtype(int, fill_value=0) dense.astype(dtype)
Sparse Properties
Sparse-specific properties, like density
, are available on the .sparse
accessor.
.. ipython:: python df.sparse.density
General differences
In a SparseDataFrame
, all columns were sparse. A :class:`DataFrame` can have a mixture of
sparse and dense columns. As a consequence, assigning new columns to a DataFrame
with sparse
values will not automatically convert the input to be sparse.
# Previous Way
>>> df = pd.SparseDataFrame({"A": [0, 1]})
>>> df['B'] = [0, 0] # implicitly becomes Sparse
>>> df['B'].dtype
Sparse[int64, nan]
Instead, you'll need to ensure that the values being assigned are sparse
.. ipython:: python df = pd.DataFrame({"A": pd.SparseArray([0, 1])}) df['B'] = [0, 0] # remains dense df['B'].dtype df['B'] = pd.SparseArray([0, 0]) df['B'].dtype
The SparseDataFrame.default_kind
and SparseDataFrame.default_fill_value
attributes
have no replacement.
Use :meth:`DataFrame.sparse.from_spmatrix` to create a DataFrame
with sparse values from a sparse matrix.
.. versionadded:: 0.25.0
.. ipython:: python from scipy.sparse import csr_matrix arr = np.random.random(size=(1000, 5)) arr[arr < .9] = 0 sp_arr = csr_matrix(arr) sp_arr sdf = pd.DataFrame.sparse.from_spmatrix(sp_arr) sdf.head() sdf.dtypes
All sparse formats are supported, but matrices that are not in :mod:`COOrdinate <scipy.sparse>` format will be converted, copying data as needed. To convert back to sparse SciPy matrix in COO format, you can use the :meth:`DataFrame.sparse.to_coo` method:
.. ipython:: python sdf.sparse.to_coo()
meth:Series.sparse.to_coo is implemented for transforming a Series
with sparse values indexed by a :class:`MultiIndex` to a :class:`scipy.sparse.coo_matrix`.
The method requires a MultiIndex
with two or more levels.
.. ipython:: python s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0), (1, 2, 'a', 1), (1, 1, 'b', 0), (1, 1, 'b', 1), (2, 1, 'b', 0), (2, 1, 'b', 1)], names=['A', 'B', 'C', 'D']) s ss = s.astype('Sparse') ss
In the example below, we transform the Series
to a sparse representation of a 2-d array by specifying that the first and second MultiIndex
levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.
.. ipython:: python A, rows, columns = ss.sparse.to_coo(row_levels=['A', 'B'], column_levels=['C', 'D'], sort_labels=True) A A.todense() rows columns
Specifying different row and column labels (and not sorting them) yields a different sparse matrix:
.. ipython:: python A, rows, columns = ss.sparse.to_coo(row_levels=['A', 'B', 'C'], column_levels=['D'], sort_labels=False) A A.todense() rows columns
A convenience method :meth:`Series.sparse.from_coo` is implemented for creating a Series
with sparse values from a scipy.sparse.coo_matrix
.
.. ipython:: python from scipy import sparse A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) A A.todense()
The default behaviour (with dense_index=False
) simply returns a Series
containing
only the non-null entries.
.. ipython:: python ss = pd.Series.sparse.from_coo(A) ss
Specifying dense_index=True
will result in an index that is the Cartesian product of the
row and columns coordinates of the matrix. Note that this will consume a significant amount of memory
(relative to dense_index=False
) if the sparse matrix is large (and sparse) enough.
.. ipython:: python ss_dense = pd.Series.sparse.from_coo(A, dense_index=True) ss_dense