Skip to content

Latest commit

 

History

History
367 lines (238 loc) · 10.2 KB

sparse.rst

File metadata and controls

367 lines (238 loc) · 10.2 KB

{{ header }}

Sparse data structures

Pandas provides data structures for efficiently storing sparse data. These are not necessarily sparse in the typical "mostly 0". Rather, you can view these objects as being "compressed" where any data matching a specific value (NaN / missing value, though any value can be chosen, including 0) is omitted. The compressed values are not actually stored in the array.

.. ipython:: python

   arr = np.random.randn(10)
   arr[2:-2] = np.nan
   ts = pd.Series(pd.SparseArray(arr))
   ts

Notice the dtype, Sparse[float64, nan]. The nan means that elements in the array that are nan aren't actually stored, only the non-nan elements are. Those non-nan elements have a float64 dtype.

The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame:

.. ipython:: python

   df = pd.DataFrame(np.random.randn(10000, 4))
   df.iloc[:9998] = np.nan
   sdf = df.astype(pd.SparseDtype("float", np.nan))
   sdf.head()
   sdf.dtypes
   sdf.sparse.density

As you can see, the density (% of values that have not been "compressed") is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter.

.. ipython:: python

   'dense : {:0.2f} bytes'.format(df.memory_usage().sum() / 1e3)
   'sparse: {:0.2f} bytes'.format(sdf.memory_usage().sum() / 1e3)

Functionally, their behavior should be nearly identical to their dense counterparts.

SparseArray

:class:`SparseArray` is a :class:`~pandas.api.extensions.ExtensionArray` for storing an array of sparse values (see :ref:`basics.dtypes` for more on extension arrays). It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value:

.. ipython:: python

   arr = np.random.randn(10)
   arr[2:5] = np.nan
   arr[7:8] = np.nan
   sparr = pd.SparseArray(arr)
   sparr

A sparse array can be converted to a regular (dense) ndarray with :meth:`numpy.asarray`

.. ipython:: python

   np.asarray(sparr)


SparseDtype

The :attr:`SparseArray.dtype` property stores two pieces of information

  1. The dtype of the non-sparse values
  2. The scalar fill value
.. ipython:: python

   sparr.dtype


A :class:`SparseDtype` may be constructed by passing each of these

.. ipython:: python

   pd.SparseDtype(np.dtype('datetime64[ns]'))

The default fill value for a given NumPy dtype is the "missing" value for that dtype, though it may be overridden.

.. ipython:: python

   pd.SparseDtype(np.dtype('datetime64[ns]'),
                  fill_value=pd.Timestamp('2017-01-01'))

Finally, the string alias 'Sparse[dtype]' may be used to specify a sparse dtype in many places

.. ipython:: python

   pd.array([1, 0, 0, 2], dtype='Sparse[int]')

Sparse accessor

.. versionadded:: 0.24.0

Pandas provides a .sparse accessor, similar to .str for string data, .cat for categorical data, and .dt for datetime-like data. This namespace provides attributes and methods that are specific to sparse data.

.. ipython:: python

   s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]")
   s.sparse.density
   s.sparse.fill_value

This accessor is available only on data with SparseDtype, and on the :class:`Series` class itself for creating a Series with sparse data from a scipy COO matrix with.

.. versionadded:: 0.25.0

A .sparse accessor has been added for :class:`DataFrame` as well. See :ref:`api.frame.sparse` for more.

Sparse calculation

You can apply NumPy ufuncs to SparseArray and get a SparseArray as a result.

.. ipython:: python

   arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan])
   np.abs(arr)


The ufunc is also applied to fill_value. This is needed to get the correct dense result.

.. ipython:: python

   arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1)
   np.abs(arr)
   np.abs(arr).to_dense()

Migrating

Note

SparseSeries and SparseDataFrame were removed in pandas 1.0.0. This migration guide is present to aid in migrating from previous versions.

In older versions of pandas, the SparseSeries and SparseDataFrame classes (documented below) were the preferred way to work with sparse data. With the advent of extension arrays, these subclasses are no longer needed. Their purpose is better served by using a regular Series or DataFrame with sparse values instead.

Note

There's no performance or memory penalty to using a Series or DataFrame with sparse values, rather than a SparseSeries or SparseDataFrame.

This section provides some guidance on migrating your code to the new style. As a reminder, you can use the python warnings module to control warnings. But we recommend modifying your code, rather than ignoring the warning.

Construction

From an array-like, use the regular :class:`Series` or :class:`DataFrame` constructors with :class:`SparseArray` values.

# Previous way
>>> pd.SparseDataFrame({"A": [0, 1]})
.. ipython:: python

   # New way
   pd.DataFrame({"A": pd.SparseArray([0, 1])})

From a SciPy sparse matrix, use :meth:`DataFrame.sparse.from_spmatrix`,

# Previous way
>>> from scipy import sparse
>>> mat = sparse.eye(3)
>>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C'])
.. ipython:: python

   # New way
   from scipy import sparse
   mat = sparse.eye(3)
   df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C'])
   df.dtypes

Conversion

From sparse to dense, use the .sparse accessors

.. ipython:: python

   df.sparse.to_dense()
   df.sparse.to_coo()

From dense to sparse, use :meth:`DataFrame.astype` with a :class:`SparseDtype`.

.. ipython:: python

   dense = pd.DataFrame({"A": [1, 0, 0, 1]})
   dtype = pd.SparseDtype(int, fill_value=0)
   dense.astype(dtype)

Sparse Properties

Sparse-specific properties, like density, are available on the .sparse accessor.

.. ipython:: python

   df.sparse.density

General differences

In a SparseDataFrame, all columns were sparse. A :class:`DataFrame` can have a mixture of sparse and dense columns. As a consequence, assigning new columns to a DataFrame with sparse values will not automatically convert the input to be sparse.

# Previous Way
>>> df = pd.SparseDataFrame({"A": [0, 1]})
>>> df['B'] = [0, 0]  # implicitly becomes Sparse
>>> df['B'].dtype
Sparse[int64, nan]

Instead, you'll need to ensure that the values being assigned are sparse

.. ipython:: python

   df = pd.DataFrame({"A": pd.SparseArray([0, 1])})
   df['B'] = [0, 0]  # remains dense
   df['B'].dtype
   df['B'] = pd.SparseArray([0, 0])
   df['B'].dtype

The SparseDataFrame.default_kind and SparseDataFrame.default_fill_value attributes have no replacement.

Interaction with scipy.sparse

Use :meth:`DataFrame.sparse.from_spmatrix` to create a DataFrame with sparse values from a sparse matrix.

.. versionadded:: 0.25.0

.. ipython:: python

   from scipy.sparse import csr_matrix

   arr = np.random.random(size=(1000, 5))
   arr[arr < .9] = 0

   sp_arr = csr_matrix(arr)
   sp_arr

   sdf = pd.DataFrame.sparse.from_spmatrix(sp_arr)
   sdf.head()
   sdf.dtypes

All sparse formats are supported, but matrices that are not in :mod:`COOrdinate <scipy.sparse>` format will be converted, copying data as needed. To convert back to sparse SciPy matrix in COO format, you can use the :meth:`DataFrame.sparse.to_coo` method:

.. ipython:: python

   sdf.sparse.to_coo()

meth:Series.sparse.to_coo is implemented for transforming a Series with sparse values indexed by a :class:`MultiIndex` to a :class:`scipy.sparse.coo_matrix`.

The method requires a MultiIndex with two or more levels.

.. ipython:: python

   s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])
   s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
                                        (1, 2, 'a', 1),
                                        (1, 1, 'b', 0),
                                        (1, 1, 'b', 1),
                                        (2, 1, 'b', 0),
                                        (2, 1, 'b', 1)],
                                       names=['A', 'B', 'C', 'D'])
   s
   ss = s.astype('Sparse')
   ss

In the example below, we transform the Series to a sparse representation of a 2-d array by specifying that the first and second MultiIndex levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.

.. ipython:: python

   A, rows, columns = ss.sparse.to_coo(row_levels=['A', 'B'],
                                       column_levels=['C', 'D'],
                                       sort_labels=True)

   A
   A.todense()
   rows
   columns

Specifying different row and column labels (and not sorting them) yields a different sparse matrix:

.. ipython:: python

   A, rows, columns = ss.sparse.to_coo(row_levels=['A', 'B', 'C'],
                                       column_levels=['D'],
                                       sort_labels=False)

   A
   A.todense()
   rows
   columns

A convenience method :meth:`Series.sparse.from_coo` is implemented for creating a Series with sparse values from a scipy.sparse.coo_matrix.

.. ipython:: python

   from scipy import sparse
   A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
                         shape=(3, 4))
   A
   A.todense()

The default behaviour (with dense_index=False) simply returns a Series containing only the non-null entries.

.. ipython:: python

   ss = pd.Series.sparse.from_coo(A)
   ss

Specifying dense_index=True will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to dense_index=False) if the sparse matrix is large (and sparse) enough.

.. ipython:: python

   ss_dense = pd.Series.sparse.from_coo(A, dense_index=True)
   ss_dense