@@ -142,27 +142,6 @@ def map_overlap(func, df, before, after, *args, **kwargs):
142
142
return df ._constructor (dsk , name , meta , df .divisions )
143
143
144
144
145
- def wrap_rolling (func , method_name ):
146
- """Create a chunked version of a pandas.rolling_* function"""
147
- @wraps (func )
148
- def rolling (arg , window , * args , ** kwargs ):
149
- # pd.rolling_* functions are deprecated
150
- warnings .warn (("DeprecationWarning: dd.rolling_{0} is deprecated and "
151
- "will be removed in a future version, replace with "
152
- "df.rolling(...).{0}(...)" ).format (method_name ))
153
-
154
- rolling_kwargs = {}
155
- method_kwargs = {}
156
- for k , v in kwargs .items ():
157
- if k in {'min_periods' , 'center' , 'win_type' , 'axis' , 'freq' }:
158
- rolling_kwargs [k ] = v
159
- else :
160
- method_kwargs [k ] = v
161
- rolling = arg .rolling (window , ** rolling_kwargs )
162
- return getattr (rolling , method_name )(* args , ** method_kwargs )
163
- return rolling
164
-
165
-
166
145
def _head_timedelta (current , next_ , after ):
167
146
"""Return rows of ``next_`` whose index is before the last
168
147
observation in ``current`` + ``after``.
@@ -197,27 +176,6 @@ def _tail_timedelta(prev, current, before):
197
176
return prev [prev .index > (current .index .min () - before )]
198
177
199
178
200
- rolling_count = wrap_rolling (pd .rolling_count , 'count' )
201
- rolling_sum = wrap_rolling (pd .rolling_sum , 'sum' )
202
- rolling_mean = wrap_rolling (pd .rolling_mean , 'mean' )
203
- rolling_median = wrap_rolling (pd .rolling_median , 'median' )
204
- rolling_min = wrap_rolling (pd .rolling_min , 'min' )
205
- rolling_max = wrap_rolling (pd .rolling_max , 'max' )
206
- rolling_std = wrap_rolling (pd .rolling_std , 'std' )
207
- rolling_var = wrap_rolling (pd .rolling_var , 'var' )
208
- rolling_skew = wrap_rolling (pd .rolling_skew , 'skew' )
209
- rolling_kurt = wrap_rolling (pd .rolling_kurt , 'kurt' )
210
- rolling_quantile = wrap_rolling (pd .rolling_quantile , 'quantile' )
211
- rolling_apply = wrap_rolling (pd .rolling_apply , 'apply' )
212
-
213
-
214
- @wraps (pd .rolling_window )
215
- def rolling_window (arg , window , ** kwargs ):
216
- if kwargs .pop ('mean' , True ):
217
- return rolling_mean (arg , window , ** kwargs )
218
- return rolling_sum (arg , window , ** kwargs )
219
-
220
-
221
179
def pandas_rolling_method (df , rolling_kwargs , name , * args , ** kwargs ):
222
180
rolling = df .rolling (** rolling_kwargs )
223
181
return getattr (rolling , name )(* args , ** kwargs )
0 commit comments