|
| 1 | +/** |
| 2 | + * Represents a node of a binary search tree. |
| 3 | + * |
| 4 | + * @template T The type of the value stored in the node. |
| 5 | + */ |
| 6 | +class TreeNode<T> { |
| 7 | + constructor( |
| 8 | + public data: T, |
| 9 | + public leftChild?: TreeNode<T>, |
| 10 | + public rightChild?: TreeNode<T>, |
| 11 | + ) {} |
| 12 | +} |
| 13 | + |
| 14 | +/** |
| 15 | + * An implementation of a binary search tree. |
| 16 | + * |
| 17 | + * A binary tree is a tree with only two children per node. A binary search tree on top sorts the children according |
| 18 | + * to following rules: |
| 19 | + * - left child < parent node |
| 20 | + * - right child > parent node |
| 21 | + * - all children on the left side < root node |
| 22 | + * - all children on the right side > root node |
| 23 | + * |
| 24 | + * For profound information about trees |
| 25 | + * @see https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/ |
| 26 | + * |
| 27 | + * @template T The data type of the values in the binary tree. |
| 28 | + */ |
| 29 | +export class BinarySearchTree<T> { |
| 30 | + rootNode?: TreeNode<T>; |
| 31 | + |
| 32 | + /** |
| 33 | + * Instantiates the binary search tree. |
| 34 | + * |
| 35 | + * @param rootNode The root node. |
| 36 | + */ |
| 37 | + constructor() { |
| 38 | + this.rootNode = undefined; |
| 39 | + } |
| 40 | + |
| 41 | + /** |
| 42 | + * Checks, if the binary search tree is empty, i. e. has no root node. |
| 43 | + * |
| 44 | + * @returns Whether the binary search tree is empty. |
| 45 | + */ |
| 46 | + isEmpty(): boolean { |
| 47 | + return this.rootNode === undefined; |
| 48 | + } |
| 49 | + |
| 50 | + /** |
| 51 | + * Checks whether the tree has the given data or not. |
| 52 | + * |
| 53 | + * @param data The data to check for. |
| 54 | + */ |
| 55 | + has(data: T): boolean { |
| 56 | + if (!this.rootNode) { |
| 57 | + return false; |
| 58 | + } |
| 59 | + |
| 60 | + let currentNode = this.rootNode; |
| 61 | + while (currentNode.data !== data) { |
| 62 | + if (data > currentNode.data) { |
| 63 | + if (!currentNode.rightChild) { |
| 64 | + return false; |
| 65 | + } |
| 66 | + |
| 67 | + currentNode = currentNode.rightChild; |
| 68 | + } else { |
| 69 | + if (!currentNode.leftChild) { |
| 70 | + return false; |
| 71 | + } |
| 72 | + |
| 73 | + currentNode = currentNode.leftChild; |
| 74 | + } |
| 75 | + } |
| 76 | + |
| 77 | + return true; |
| 78 | + } |
| 79 | + |
| 80 | + /** |
| 81 | + * Inserts the given data into the binary search tree. |
| 82 | + * |
| 83 | + * @param data The data to be stored in the binary search tree. |
| 84 | + * @returns |
| 85 | + */ |
| 86 | + insert(data: T): void { |
| 87 | + if (!this.rootNode) { |
| 88 | + this.rootNode = new TreeNode<T>(data); |
| 89 | + return; |
| 90 | + } |
| 91 | + |
| 92 | + let currentNode: TreeNode<T> = this.rootNode; |
| 93 | + while (true) { |
| 94 | + if (data > currentNode.data) { |
| 95 | + if (currentNode.rightChild) { |
| 96 | + currentNode = currentNode.rightChild; |
| 97 | + } else { |
| 98 | + currentNode.rightChild = new TreeNode<T>(data); |
| 99 | + return; |
| 100 | + } |
| 101 | + } else { |
| 102 | + if (currentNode.leftChild) { |
| 103 | + currentNode = currentNode.leftChild; |
| 104 | + } else { |
| 105 | + currentNode.leftChild = new TreeNode<T>(data); |
| 106 | + return; |
| 107 | + } |
| 108 | + } |
| 109 | + } |
| 110 | + } |
| 111 | + |
| 112 | + /** |
| 113 | + * Finds the minimum value of the binary search tree. |
| 114 | + * |
| 115 | + * @returns The minimum value of the binary search tree |
| 116 | + */ |
| 117 | + findMin(): T { |
| 118 | + if (!this.rootNode) { |
| 119 | + throw new Error('Empty tree.'); |
| 120 | + } |
| 121 | + |
| 122 | + const traverse = (node: TreeNode<T>): T => { |
| 123 | + return !node.leftChild ? node.data : traverse(node.leftChild); |
| 124 | + }; |
| 125 | + |
| 126 | + return traverse(this.rootNode); |
| 127 | + } |
| 128 | + |
| 129 | + /** |
| 130 | + * Finds the maximum value of the binary search tree. |
| 131 | + * |
| 132 | + * @returns The maximum value of the binary search tree |
| 133 | + */ |
| 134 | + findMax(): T { |
| 135 | + if (!this.rootNode) { |
| 136 | + throw new Error('Empty tree.'); |
| 137 | + } |
| 138 | + |
| 139 | + const traverse = (node: TreeNode<T>): T => { |
| 140 | + return !node.rightChild ? node.data : traverse(node.rightChild); |
| 141 | + }; |
| 142 | + |
| 143 | + return traverse(this.rootNode); |
| 144 | + } |
| 145 | + |
| 146 | + /** |
| 147 | + * Traverses to the binary search tree in in-order, i. e. it follow the schema of: |
| 148 | + * Left Node -> Root Node -> Right Node |
| 149 | + * |
| 150 | + * @param array The already found node data for recursive access. |
| 151 | + * @returns |
| 152 | + */ |
| 153 | + inOrderTraversal(array: T[] = []): T[] { |
| 154 | + if (!this.rootNode) { |
| 155 | + return array; |
| 156 | + } |
| 157 | + |
| 158 | + const traverse = (node?: TreeNode<T>, array: T[] = []): T[] => { |
| 159 | + if (!node) { |
| 160 | + return array; |
| 161 | + } |
| 162 | + |
| 163 | + traverse(node.leftChild, array); |
| 164 | + array.push(node.data); |
| 165 | + traverse(node.rightChild, array); |
| 166 | + return array; |
| 167 | + }; |
| 168 | + |
| 169 | + return traverse(this.rootNode); |
| 170 | + } |
| 171 | + |
| 172 | + /** |
| 173 | + * Traverses to the binary search tree in pre-order, i. e. it follow the schema of: |
| 174 | + * Root Node -> Left Node -> Right Node |
| 175 | + * |
| 176 | + * @param array The already found node data for recursive access. |
| 177 | + * @returns |
| 178 | + */ |
| 179 | + preOrderTraversal(array: T[] = []): T[] { |
| 180 | + if (!this.rootNode) { |
| 181 | + return array; |
| 182 | + } |
| 183 | + |
| 184 | + const traverse = (node?: TreeNode<T>, array: T[] = []): T[] => { |
| 185 | + if (!node) { |
| 186 | + return array; |
| 187 | + } |
| 188 | + |
| 189 | + array.push(node.data); |
| 190 | + traverse(node.leftChild, array); |
| 191 | + traverse(node.rightChild, array); |
| 192 | + |
| 193 | + return array; |
| 194 | + }; |
| 195 | + |
| 196 | + return traverse(this.rootNode); |
| 197 | + } |
| 198 | + |
| 199 | + /** |
| 200 | + * Traverses to the binary search tree in post-order, i. e. it follow the schema of: |
| 201 | + * Left Node -> Right Node -> Root Node |
| 202 | + * |
| 203 | + * @param array The already found node data for recursive access. |
| 204 | + * @returns |
| 205 | + */ |
| 206 | + postOrderTraversal(array: T[] = []): T[] { |
| 207 | + if (!this.rootNode) { |
| 208 | + return array; |
| 209 | + } |
| 210 | + |
| 211 | + const traverse = (node?: TreeNode<T>, array: T[] = []): T[] => { |
| 212 | + if (!node) { |
| 213 | + return array; |
| 214 | + } |
| 215 | + |
| 216 | + traverse(node.leftChild, array); |
| 217 | + traverse(node.rightChild, array); |
| 218 | + array.push(node.data); |
| 219 | + |
| 220 | + return array; |
| 221 | + }; |
| 222 | + |
| 223 | + return traverse(this.rootNode); |
| 224 | + } |
| 225 | +} |
0 commit comments