diff --git a/DIRECTORY.md b/DIRECTORY.md index 1a641d8ecb59..18c573909773 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -317,6 +317,7 @@ * [Longest Sub Array](dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py) + * [Max Product Subarray](dynamic_programming/max_product_subarray.py) * [Max Sub Array](dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py) * [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py) @@ -1016,6 +1017,8 @@ * [Sol1](project_euler/problem_587/sol1.py) * Problem 686 * [Sol1](project_euler/problem_686/sol1.py) + * Problem 800 + * [Sol1](project_euler/problem_800/sol1.py) ## Quantum * [Bb84](quantum/bb84.py) diff --git a/project_euler/problem_800/__init__.py b/project_euler/problem_800/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_800/sol1.py b/project_euler/problem_800/sol1.py new file mode 100644 index 000000000000..f887787bcbc6 --- /dev/null +++ b/project_euler/problem_800/sol1.py @@ -0,0 +1,65 @@ +""" +Project Euler Problem 800: https://projecteuler.net/problem=800 + +An integer of the form p^q q^p with prime numbers p != q is called a hybrid-integer. +For example, 800 = 2^5 5^2 is a hybrid-integer. + +We define C(n) to be the number of hybrid-integers less than or equal to n. +You are given C(800) = 2 and C(800^800) = 10790 + +Find C(800800^800800) +""" + +from math import isqrt, log2 + + +def calculate_prime_numbers(max_number: int) -> list[int]: + """ + Returns prime numbers below max_number + + >>> calculate_prime_numbers(10) + [2, 3, 5, 7] + """ + + is_prime = [True] * max_number + for i in range(2, isqrt(max_number - 1) + 1): + if is_prime[i]: + for j in range(i**2, max_number, i): + is_prime[j] = False + + return [i for i in range(2, max_number) if is_prime[i]] + + +def solution(base: int = 800800, degree: int = 800800) -> int: + """ + Returns the number of hybrid-integers less than or equal to base^degree + + >>> solution(800, 1) + 2 + + >>> solution(800, 800) + 10790 + """ + + upper_bound = degree * log2(base) + max_prime = int(upper_bound) + prime_numbers = calculate_prime_numbers(max_prime) + + hybrid_integers_count = 0 + left = 0 + right = len(prime_numbers) - 1 + while left < right: + while ( + prime_numbers[right] * log2(prime_numbers[left]) + + prime_numbers[left] * log2(prime_numbers[right]) + > upper_bound + ): + right -= 1 + hybrid_integers_count += right - left + left += 1 + + return hybrid_integers_count + + +if __name__ == "__main__": + print(f"{solution() = }")