From c622fdb0ef9bac5592e6c3dfb09de8edcbaeabd4 Mon Sep 17 00:00:00 2001 From: fa1l Date: Thu, 8 Oct 2020 10:02:58 +0500 Subject: [PATCH] improvements for project euler task 63 --- project_euler/problem_63/sol1.py | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/project_euler/problem_63/sol1.py b/project_euler/problem_63/sol1.py index e429db07bf8a..4dcfe4c39962 100644 --- a/project_euler/problem_63/sol1.py +++ b/project_euler/problem_63/sol1.py @@ -1,6 +1,8 @@ """ -The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, -134217728=89, is a ninth power. +https://projecteuler.net/problem=63 + +The 5-digit number, 16807=7**5, is also a fifth power. Similarly, the 9-digit number, +134217728=8**9, is a ninth power. How many n-digit positive integers exist which are also an nth power? """ @@ -11,7 +13,7 @@ """ -def compute_nums(max_base: int = 10, max_power: int = 22) -> int: +def compute_nums(max_base: int, max_power: int) -> int: """ Returns the count of all n-digit numbers which are nth power >>> compute_nums(10, 22) @@ -30,5 +32,10 @@ def compute_nums(max_base: int = 10, max_power: int = 22) -> int: ) +def solution(max_base: int = 10, max_power: int = 22) -> int: + """Returns the count of all n-digit numbers which are nth power.""" + return compute_nums(max_base, max_power) + + if __name__ == "__main__": - print(f"{compute_nums(10, 22) = }") + print(f"{solution(10, 22) = }")