diff --git a/computer_vision/image_classification_example_mnist_cnn.py b/computer_vision/image_classification_example_mnist_cnn.py new file mode 100644 index 000000000000..5aa8761ca588 --- /dev/null +++ b/computer_vision/image_classification_example_mnist_cnn.py @@ -0,0 +1,167 @@ +""" +This Script contains the default EMNIST code for comparison. + +Execution Details are available here: +https://www.kaggle.com/code/dipuk0506/mnist-cnn + +The code is improved from: + nextjournal.com/gkoehler/pytorch-mnist + +@author: Dipu Kabir +""" + +import torch +import torchvision +import torch.nn as nn +import torch.nn.functional as functional +import torch.optim as optim + +n_epochs = 8 +batch_size_train = 64 +batch_size_test = 1000 +learning_rate = 0.01 +momentum = 0.5 +log_interval = 100 + + +torch.backends.cudnn.enabled = False + + +train_loader = torch.utils.data.DataLoader( + torchvision.datasets.MNIST( + "/files/", + train=True, + download=True, + transform=torchvision.transforms.Compose( + [ + torchvision.transforms.ToTensor(), + torchvision.transforms.Normalize((0.1307,), (0.3081,)), + ] + ), + ), + batch_size=batch_size_train, + shuffle=True, +) + +test_loader = torch.utils.data.DataLoader( + torchvision.datasets.MNIST( + "/files/", + train=False, + download=True, + transform=torchvision.transforms.Compose( + [ + torchvision.transforms.ToTensor(), + torchvision.transforms.Normalize((0.1307,), (0.3081,)), + ] + ), + ), + batch_size=batch_size_test, + shuffle=True, +) + +examples = enumerate(test_loader) +batch_idx, (example_data, example_targets) = next(examples) + +print(example_data.shape) + +import matplotlib.pyplot as plt + +fig = plt.figure() +for i in range(6): + plt.subplot(2, 3, i + 1) + plt.tight_layout() + plt.imshow(example_data[i][0], cmap="gray", interpolation="none") + plt.title("Ground Truth: {}".format(example_targets[i])) + plt.xticks([]) + plt.yticks([]) +fig + + +class Net(nn.Module): + def __init__(self): + super(Net, self).__init__() + self.conv1 = nn.Conv2d(1, 10, kernel_size=5) + self.conv2 = nn.Conv2d(10, 20, kernel_size=5) + self.conv2_drop = nn.Dropout2d() + self.fc1 = nn.Linear(320, 50) + self.fc2 = nn.Linear(50, 10) + + def forward(self, x): + x = functional.relu(functional.max_pool2d(self.conv1(x), 2)) + x = functional.relu(functional.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) + x = x.view(-1, 320) + x = functional.relu(self.fc1(x)) + x = functional.dropout(x, training=self.training) + x = self.fc2(x) + return functional.log_softmax(x) + + +network = Net() +optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum) + + +train_losses = [] +train_counter = [] +test_losses = [] +test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)] + + +def train(epoch): + network.train() + for batch_idx, (data, target) in enumerate(train_loader): + optimizer.zero_grad() + output = network(data) + loss = functional.nll_loss(output, target) + loss.backward() + optimizer.step() + if batch_idx % log_interval == 0: + print( + "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( + epoch, + batch_idx * len(data), + len(train_loader.dataset), + 100.0 * batch_idx / len(train_loader), + loss.item(), + ) + ) + train_losses.append(loss.item()) + train_counter.append( + (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)) + ) + + +def test(): + network.eval() + test_loss = 0 + correct = 0 + with torch.no_grad(): + for data, target in test_loader: + output = network(data) + test_loss += functional.nll_loss(output, target, size_average=False).item() + pred = output.data.max(1, keepdim=True)[1] + correct += pred.eq(target.data.view_as(pred)).sum() + test_loss /= len(test_loader.dataset) + test_losses.append(test_loss) + print( + "\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( + test_loss, + correct, + len(test_loader.dataset), + 100.0 * correct / len(test_loader.dataset), + ) + ) + + +test() +for epoch in range(1, n_epochs + 1): + train(epoch) + test() +# %% + +fig = plt.figure() +plt.plot(train_counter, train_losses, color="blue") +plt.scatter(test_counter, test_losses, color="red") +plt.legend(["Train Loss", "Test Loss"], loc="upper right") +plt.xlabel("number of training examples seen") +plt.ylabel("negative log likelihood loss") +fig