diff --git a/matrix/matrix_equalization.py b/matrix/matrix_equalization.py new file mode 100644 index 000000000000..e7e76505cf63 --- /dev/null +++ b/matrix/matrix_equalization.py @@ -0,0 +1,55 @@ +from sys import maxsize + + +def array_equalization(vector: list[int], step_size: int) -> int: + """ + This algorithm equalizes all elements of the input vector + to a common value, by making the minimal number of + "updates" under the constraint of a step size (step_size). + + >>> array_equalization([1, 1, 6, 2, 4, 6, 5, 1, 7, 2, 2, 1, 7, 2, 2], 4) + 4 + >>> array_equalization([22, 81, 88, 71, 22, 81, 632, 81, 81, 22, 92], 2) + 5 + >>> array_equalization([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 5) + 0 + >>> array_equalization([22, 22, 22, 33, 33, 33], 2) + 2 + >>> array_equalization([1, 2, 3], 0) + Traceback (most recent call last): + ValueError: Step size must be positive and non-zero. + >>> array_equalization([1, 2, 3], -1) + Traceback (most recent call last): + ValueError: Step size must be positive and non-zero. + >>> array_equalization([1, 2, 3], 0.5) + Traceback (most recent call last): + ValueError: Step size must be an integer. + >>> array_equalization([1, 2, 3], maxsize) + 1 + """ + if step_size <= 0: + raise ValueError("Step size must be positive and non-zero.") + if not isinstance(step_size, int): + raise ValueError("Step size must be an integer.") + + unique_elements = set(vector) + min_updates = maxsize + + for element in unique_elements: + elem_index = 0 + updates = 0 + while elem_index < len(vector): + if vector[elem_index] != element: + updates += 1 + elem_index += step_size + else: + elem_index += 1 + min_updates = min(min_updates, updates) + + return min_updates + + +if __name__ == "__main__": + from doctest import testmod + + testmod()