From 303b810b0f690629e3ed6f8575377afef4e9d672 Mon Sep 17 00:00:00 2001 From: Ankit Avinash Date: Wed, 18 Oct 2023 20:18:55 +0530 Subject: [PATCH] Added Categorical Focal Cross Entropy Loss --- .../categorical_focal_cross_entropy.py | 87 +++++++++++++++++++ 1 file changed, 87 insertions(+) create mode 100644 machine_learning/loss_functions/categorical_focal_cross_entropy.py diff --git a/machine_learning/loss_functions/categorical_focal_cross_entropy.py b/machine_learning/loss_functions/categorical_focal_cross_entropy.py new file mode 100644 index 000000000000..77910ca27cc2 --- /dev/null +++ b/machine_learning/loss_functions/categorical_focal_cross_entropy.py @@ -0,0 +1,87 @@ +""" +Categorical Cross-Entropy Loss + +This function calculates the Categorical Cross-Entropy Loss between true class +labels and predicted class probabilities. +It's a variation of categorical cross-entropy that addresses class imbalance +by focusing on hard examples. + +Formula: +Categorical Cross-Entropy Loss = -Σ(y_true * (1 - y_pred)**gamma * ln(y_pred)) + +Resources: +[Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf) +""" +import numpy as np + +def categorical_focal_cross_entropy( + y_true: np.ndarray, y_pred: np.ndarray, + gamma: float = 2.0, epsilon: float = 1e-15 +) -> float: + """ + Calculate Categorical Focal Cross-Entropy Loss between true class labels and + predicted class probabilities. + + Parameters: + - y_true: True class labels (one-hot encoded) as a NumPy array. + - y_pred: Predicted class probabilities as a NumPy array. + - gamma: Focusing parameter for the Focal Loss. + - epsilon: Small constant to avoid numerical instability. + + Returns: + - cfce_loss: Categorical Focal Cross-Entropy Loss as a floating-point number. + + Example: + >>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + >>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]]) + >>> categorical_focal_cross_entropy(true_labels, pred_probs) + 0.034207955267642455 + + >>> y_true = np.array([[1, 0], [0, 1]]) + >>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]]) + >>> categorical_focal_cross_entropy(y_true, y_pred) + Traceback (most recent call last): + ... + ValueError: Input arrays must have the same shape. + + >>> y_true = np.array([[2, 0, 1], [1, 0, 0]]) + >>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]]) + >>> categorical_focal_cross_entropy(y_true, y_pred) + Traceback (most recent call last): + ... + ValueError: y_true must be one-hot encoded. + + >>> y_true = np.array([[1, 0, 1], [1, 0, 0]]) + >>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]]) + >>> categorical_focal_cross_entropy(y_true, y_pred) + Traceback (most recent call last): + ... + ValueError: y_true must be one-hot encoded. + + >>> y_true = np.array([[1, 0, 0], [0, 1, 0]]) + >>> y_pred = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]]) + >>> categorical_focal_cross_entropy(y_true, y_pred) + Traceback (most recent call last): + ... + ValueError: Predicted probabilities must sum to approximately 1. + """ + if y_true.shape != y_pred.shape: + raise ValueError("Input arrays must have the same shape.") + + if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1): + raise ValueError("y_true must be one-hot encoded.") + + if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)): + raise ValueError("Predicted probabilities must sum to approximately 1.") + + # Clip predicted probabilities to avoid log(0) + y_pred = np.clip(y_pred, epsilon, 1) + + # Calculate categorical focal cross-entropy loss + return -np.sum(y_true * (1 - y_pred) ** gamma * np.log(y_pred)) + + +if __name__ == "__main__": + import doctest + + doctest.testmod()