|
| 1 | +""" Travelling Salesman Problem (TSP) """ |
| 2 | + |
| 3 | +import itertools |
| 4 | +import math |
| 5 | + |
| 6 | +class InvalidGraphError(ValueError): |
| 7 | + """Custom error for invalid graph inputs.""" |
| 8 | + |
| 9 | +def euclidean_distance(point1: list[float], point2: list[float]) -> float: |
| 10 | + """ |
| 11 | + Calculate the Euclidean distance between two points in 2D space. |
| 12 | +
|
| 13 | + :param point1: Coordinates of the first point [x, y] |
| 14 | + :param point2: Coordinates of the second point [x, y] |
| 15 | + :return: The Euclidean distance between the two points |
| 16 | +
|
| 17 | + >>> euclidean_distance([0, 0], [3, 4]) |
| 18 | + 5.0 |
| 19 | + >>> euclidean_distance([1, 1], [1, 1]) |
| 20 | + 0.0 |
| 21 | + >>> euclidean_distance([1, 1], ['a', 1]) |
| 22 | + Traceback (most recent call last): |
| 23 | + ... |
| 24 | + ValueError: Invalid input: Points must be numerical coordinates |
| 25 | + """ |
| 26 | + try: |
| 27 | + return math.sqrt((point2[0] - point1[0]) ** 2 + (point2[1] - point1[1]) ** 2) |
| 28 | + except TypeError: |
| 29 | + raise ValueError("Invalid input: Points must be numerical coordinates") |
| 30 | + |
| 31 | +def validate_graph(graph_points: dict[str, list[float]]) -> None: |
| 32 | + """ |
| 33 | + Validate the input graph to ensure it has valid nodes and coordinates. |
| 34 | +
|
| 35 | + :param graph_points: A dictionary where the keys are node names, |
| 36 | + and values are 2D coordinates as [x, y] |
| 37 | + :raises InvalidGraphError: If the graph points are not valid |
| 38 | +
|
| 39 | + >>> validate_graph({"A": [10, 20], "B": [30, 21], "C": [15, 35]}) # Valid graph |
| 40 | + >>> validate_graph({"A": [10, 20], "B": [30, "invalid"], "C": [15, 35]}) |
| 41 | + Traceback (most recent call last): |
| 42 | + ... |
| 43 | + InvalidGraphError: Each node must have a valid 2D coordinate [x, y] |
| 44 | + |
| 45 | + >>> validate_graph([10, 20]) # Invalid input type |
| 46 | + Traceback (most recent call last): |
| 47 | + ... |
| 48 | + InvalidGraphError: Graph must be a dictionary with node names and coordinates |
| 49 | + |
| 50 | + >>> validate_graph({"A": [10, 20], "B": [30, 21], "C": [15]}) # Missing coordinate |
| 51 | + Traceback (most recent call last): |
| 52 | + ... |
| 53 | + InvalidGraphError: Each node must have a valid 2D coordinate [x, y] |
| 54 | + """ |
| 55 | + if not isinstance(graph_points, dict): |
| 56 | + raise InvalidGraphError( |
| 57 | + "Graph must be a dictionary with node names and coordinates" |
| 58 | + ) |
| 59 | + |
| 60 | + for node, coordinates in graph_points.items(): |
| 61 | + if ( |
| 62 | + not isinstance(node, str) |
| 63 | + or not isinstance(coordinates, list) |
| 64 | + or len(coordinates) != 2 |
| 65 | + or not all(isinstance(c, (int, float)) for c in coordinates) |
| 66 | + ): |
| 67 | + raise InvalidGraphError("Each node must have a valid 2D coordinate [x, y]") |
| 68 | + |
| 69 | +# TSP in Brute Force Approach |
| 70 | +def travelling_salesman_brute_force( |
| 71 | + graph_points: dict[str, list[float]], |
| 72 | +) -> tuple[list[str], float]: |
| 73 | + """ |
| 74 | + Solve the Travelling Salesman Problem using brute force. |
| 75 | +
|
| 76 | + :param graph_points: A dictionary of nodes and their coordinates {node: [x, y]} |
| 77 | + :return: The shortest path and its total distance |
| 78 | +
|
| 79 | + >>> graph = {"A": [10, 20], "B": [30, 21], "C": [15, 35]} |
| 80 | + >>> travelling_salesman_brute_force(graph) |
| 81 | + (['A', 'C', 'B', 'A'], 56.35465722402587) |
| 82 | + """ |
| 83 | + validate_graph(graph_points) |
| 84 | + |
| 85 | + nodes = list(graph_points.keys()) # Extracting the node names (keys) |
| 86 | + |
| 87 | + # There shoukd be atleast 2 nodes for a valid TSP |
| 88 | + if len(nodes) < 2: |
| 89 | + raise InvalidGraphError("Graph must have at least two nodes") |
| 90 | + |
| 91 | + min_path = [] # List that stores shortest path |
| 92 | + min_distance = float("inf") # Initialize minimum distance to infinity |
| 93 | + |
| 94 | + start_node = nodes[0] |
| 95 | + other_nodes = nodes[1:] |
| 96 | + |
| 97 | + # Iterating over all permutations of the other nodes |
| 98 | + for perm in itertools.permutations(other_nodes): |
| 99 | + path = [start_node, *perm, start_node] |
| 100 | + |
| 101 | + # Calculating the total distance |
| 102 | + total_distance = sum( |
| 103 | + euclidean_distance(graph_points[path[i]], graph_points[path[i + 1]]) |
| 104 | + for i in range(len(path) - 1) |
| 105 | + ) |
| 106 | + |
| 107 | + # Update minimum distance if shorter path found |
| 108 | + if total_distance < min_distance: |
| 109 | + min_distance = total_distance |
| 110 | + min_path = path |
| 111 | + |
| 112 | + return min_path, min_distance |
| 113 | + |
| 114 | +# TSP in Dynamic Programming approach |
| 115 | +def travelling_salesman_dynamic_programming( |
| 116 | + graph_points: dict[str, list[float]], |
| 117 | +) -> tuple[list[str], float]: |
| 118 | + """ |
| 119 | + Solve the Travelling Salesman Problem using dynamic programming. |
| 120 | +
|
| 121 | + :param graph_points: A dictionary of nodes and their coordinates {node: [x, y]} |
| 122 | + :return: The shortest path and its total distance |
| 123 | +
|
| 124 | + >>> graph = {"A": [10, 20], "B": [30, 21], "C": [15, 35]} |
| 125 | + >>> travelling_salesman_dynamic_programming(graph) |
| 126 | + (['A', 'C', 'B', 'A'], 56.35465722402587) |
| 127 | + """ |
| 128 | + validate_graph(graph_points) |
| 129 | + |
| 130 | + n = len(graph_points) # Extracting the node names (keys) |
| 131 | + |
| 132 | + # There shoukd be atleast 2 nodes for a valid TSP |
| 133 | + if n < 2: |
| 134 | + raise InvalidGraphError("Graph must have at least two nodes") |
| 135 | + |
| 136 | + nodes = list(graph_points.keys()) # Extracting the node names (keys) |
| 137 | + |
| 138 | + # Initialize distance matrix with float values |
| 139 | + dist = [[euclidean_distance(graph_points[nodes[i]], graph_points[nodes[j]]) for j in range(n)] for i in range(n)] |
| 140 | + |
| 141 | + # Initialize a dynamic programming table with infinity |
| 142 | + dp = [[float("inf")] * n for _ in range(1 << n)] |
| 143 | + dp[1][0] = 0 # Only visited node is the starting point at node 0 |
| 144 | + |
| 145 | + # Iterate through all masks of visited nodes |
| 146 | + for mask in range(1 << n): |
| 147 | + for u in range(n): |
| 148 | + # If current node 'u' is visited |
| 149 | + if mask & (1 << u): |
| 150 | + # Traverse nodes 'v' such that u->v |
| 151 | + for v in range(n): |
| 152 | + if mask & (1 << v) == 0: # If v is not visited |
| 153 | + next_mask = mask | (1 << v) # Upodate mask to include 'v' |
| 154 | + # Update dynamic programming table with minimum distance |
| 155 | + dp[next_mask][v] = min(dp[next_mask][v], dp[mask][u] + dist[u][v]) |
| 156 | + |
| 157 | + final_mask = (1 << n) - 1 |
| 158 | + min_cost = float("inf") |
| 159 | + end_node = -1 # Track the last node in the optimal path |
| 160 | + |
| 161 | + for u in range(1, n): |
| 162 | + if min_cost > dp[final_mask][u] + dist[u][0]: |
| 163 | + min_cost = dp[final_mask][u] + dist[u][0] |
| 164 | + end_node = u |
| 165 | + |
| 166 | + path = [] |
| 167 | + mask = final_mask |
| 168 | + while end_node != 0: |
| 169 | + path.append(nodes[end_node]) |
| 170 | + for u in range(n): |
| 171 | + # If current state corresponds to optimal state before visiting end node |
| 172 | + if ( |
| 173 | + mask & (1 << u) |
| 174 | + and dp[mask][end_node] |
| 175 | + == dp[mask ^ (1 << end_node)][u] + dist[u][end_node] |
| 176 | + ): |
| 177 | + mask ^= 1 << end_node # Update mask to remove end node |
| 178 | + end_node = u # Set the previous node as end node |
| 179 | + break |
| 180 | + |
| 181 | + path.append(nodes[0]) # Bottom-up Order |
| 182 | + path.reverse() # Top-Down Order |
| 183 | + path.append(nodes[0]) |
| 184 | + |
| 185 | + return path, min_cost |
| 186 | + |
| 187 | + |
| 188 | +# Demo Graph |
| 189 | +# C (15, 35) |
| 190 | +# | |
| 191 | +# | |
| 192 | +# | |
| 193 | +# F (5, 15) --- A (10, 20) |
| 194 | +# | | |
| 195 | +# | | |
| 196 | +# | | |
| 197 | +# | | |
| 198 | +# E (25, 5) --- B (30, 21) |
| 199 | +# | |
| 200 | +# | |
| 201 | +# | |
| 202 | +# D (40, 10) |
| 203 | +# | |
| 204 | +# | |
| 205 | +# | |
| 206 | +# G (50, 25) |
| 207 | + |
| 208 | + |
| 209 | +if __name__ == "__main__": |
| 210 | + demo_graph = { |
| 211 | + "A": [10.0, 20.0], |
| 212 | + "B": [30.0, 21.0], |
| 213 | + "C": [15.0, 35.0], |
| 214 | + "D": [40.0, 10.0], |
| 215 | + "E": [25.0, 5.0], |
| 216 | + "F": [5.0, 15.0], |
| 217 | + "G": [50.0, 25.0], |
| 218 | + } |
| 219 | + |
| 220 | + # Brute force |
| 221 | + brute_force_result = travelling_salesman_brute_force(demo_graph) |
| 222 | + print(f"Brute force result: {brute_force_result}") |
| 223 | + |
| 224 | + # Dynamic programming |
| 225 | + dp_result = travelling_salesman_dynamic_programming(demo_graph) |
| 226 | + print(f"Dynamic programming result: {dp_result}") |
0 commit comments