|
| 1 | +from data_structures.custom_queue import Queue |
| 2 | + |
| 3 | +import pandas as pd |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +# Load the original dataset |
| 7 | +file_path = 'events.csv' |
| 8 | +data = pd.read_csv(file_path) |
| 9 | + |
| 10 | +# Step 1: Convert 'Start time UTC' to datetime format |
| 11 | +data['Start time UTC'] = pd.to_datetime(data['Start time UTC']) |
| 12 | + |
| 13 | +# Step 2: Shift the dates to match the range 2022-2024 |
| 14 | +# Calculate the original date range |
| 15 | +original_start_date = data['Start time UTC'].min() |
| 16 | +new_start_date = pd.Timestamp('2022-01-01 00:00:00') |
| 17 | + |
| 18 | +# Calculate the offset |
| 19 | +date_offset = new_start_date - original_start_date |
| 20 | + |
| 21 | +# Apply the offset to shift the date range |
| 22 | +data['Start time UTC'] = data['Start time UTC'] + date_offset |
| 23 | +data['End time UTC'] = pd.to_datetime(data['End time UTC']) + date_offset |
| 24 | +data['Start time UTC+03:00'] = pd.to_datetime(data['Start time UTC+03:00']) + date_offset |
| 25 | +data['End time UTC+03:00'] = pd.to_datetime(data['End time UTC+03:00']) + date_offset |
| 26 | + |
| 27 | +# Step 3: Rename the column to 'Electricity consumption in India' |
| 28 | +data.rename(columns={'Electricity consumption in Finland': 'Electricity consumption in India'}, inplace=True) |
| 29 | + |
| 30 | +# Step 4: Filter the data for the years 2022 to 2024 |
| 31 | +data = data[(data['Start time UTC'] >= '2022-01-01') & (data['Start time UTC'] < '2025-01-01')] |
| 32 | + |
| 33 | +# Step 5: Display the transformed dataset |
| 34 | +print(data.head()) |
| 35 | + |
| 36 | +# Save the modified dataset (optional) |
| 37 | +data.to_csv('energy_consumption_india_2022_2024.csv', index=False) |
| 38 | + |
| 39 | + |
| 40 | +import pandas as pd |
| 41 | +import numpy as np |
| 42 | +import matplotlib.pyplot as plt |
| 43 | +from sklearn.model_selection import train_test_split |
| 44 | +from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score |
| 45 | +from sklearn.linear_model import LinearRegression |
| 46 | +from sklearn.tree import DecisionTreeRegressor |
| 47 | +from sklearn.ensemble import RandomForestRegressor |
| 48 | + |
| 49 | +# Step 1: Load the preprocessed dataset |
| 50 | +file_path = 'energy_consumption_india_2022_2024.csv' |
| 51 | +data = pd.read_csv(file_path) |
| 52 | + |
| 53 | +# Convert 'Start time UTC' to datetime format if not already done |
| 54 | +data['Start time UTC'] = pd.to_datetime(data['Start time UTC']) |
| 55 | + |
| 56 | +# Step 2: Feature Engineering |
| 57 | +# Extract useful features from the 'Start time UTC' column |
| 58 | +data['year'] = data['Start time UTC'].dt.year |
| 59 | +data['month'] = data['Start time UTC'].dt.month |
| 60 | +data['day'] = data['Start time UTC'].dt.day |
| 61 | +data['hour'] = data['Start time UTC'].dt.hour |
| 62 | +data['day_of_week'] = data['Start time UTC'].dt.dayofweek |
| 63 | + |
| 64 | +# Add lag features to capture past consumption patterns |
| 65 | +data['lag_1'] = data['Electricity consumption in India'].shift(1) |
| 66 | +data['lag_7'] = data['Electricity consumption in India'].shift(7) |
| 67 | +data['lag_30'] = data['Electricity consumption in India'].shift(30) |
| 68 | +data.dropna(inplace=True) # Remove rows with NaN values due to lagging |
| 69 | + |
| 70 | +# Step 3: Prepare the data for ML models |
| 71 | +X = data.drop(['Electricity consumption in India', 'Start time UTC', 'End time UTC', |
| 72 | + 'Start time UTC+03:00', 'End time UTC+03:00'], axis=1, errors='ignore') |
| 73 | +y = data['Electricity consumption in India'] |
| 74 | + |
| 75 | +# Train-test split (80% training, 20% testing) |
| 76 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
| 77 | + |
| 78 | +# Step 4: Train and evaluate different models |
| 79 | +models = { |
| 80 | + 'Linear Regression': LinearRegression(), |
| 81 | + 'Decision Tree': DecisionTreeRegressor(random_state=42), |
| 82 | + 'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42) |
| 83 | +} |
| 84 | + |
| 85 | +results = {} |
| 86 | + |
| 87 | +for model_name, model in models.items(): |
| 88 | + # Train the model |
| 89 | + model.fit(X_train, y_train) |
| 90 | + |
| 91 | + # Make predictions |
| 92 | + y_pred = model.predict(X_test) |
| 93 | + |
| 94 | + # Evaluate the model |
| 95 | + mae = mean_absolute_error(y_test, y_pred) |
| 96 | + mse = mean_squared_error(y_test, y_pred) |
| 97 | + r2 = r2_score(y_test, y_pred) |
| 98 | + |
| 99 | + # Store the results |
| 100 | + results[model_name] = {'MAE': mae, 'MSE': mse, 'R2 Score': r2} |
| 101 | + |
| 102 | + # Print evaluation metrics |
| 103 | + print(f"{model_name} Evaluation:") |
| 104 | + print(f"MAE: {mae:.2f}") |
| 105 | + print(f"MSE: {mse:.2f}") |
| 106 | + print(f"R2 Score: {r2:.2f}") |
| 107 | + print('-' * 30) |
| 108 | + |
| 109 | +# Step 5: Visualize Actual vs Predicted for the Best Model (Random Forest in this case) |
| 110 | +best_model = models['Random Forest'] |
| 111 | +y_pred_best = best_model.predict(X_test) |
| 112 | + |
| 113 | +plt.figure(figsize=(12, 6)) |
| 114 | +plt.plot(y_test.values, label='Actual', color='blue', alpha=0.7) |
| 115 | +plt.plot(y_pred_best, label='Random Forest Predicted', color='orange', alpha=0.7) |
| 116 | +plt.title('Energy Consumption Forecasting: Actual vs Predicted') |
| 117 | +plt.xlabel('Time Index') |
| 118 | +plt.ylabel('Electricity Consumption in India') |
| 119 | +plt.legend() |
| 120 | +plt.grid(True) |
| 121 | +plt.show() |
| 122 | + |
| 123 | +# Step 6: Save Model Results (Optional) |
| 124 | +results_df = pd.DataFrame(results).T |
| 125 | +results_df.to_csv('model_performance.csv', index=True) |
1 | 126 |
|
0 commit comments