|
| 1 | +# Python3 program to create target string, starting from |
| 2 | +# random string using Genetic Algorithm |
| 3 | + |
| 4 | +import random |
| 5 | + |
| 6 | +# Number of individuals in each generation |
| 7 | +POPULATION_SIZE = 10 |
| 8 | + |
| 9 | +# Valid genes |
| 10 | +GENES = '''abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP |
| 11 | +QRSTUVWXYZ 1234567890, .-;:_!"#%&/()=?@${[]}''' |
| 12 | + |
| 13 | +# Target string to be generated |
| 14 | +TARGET = "I love GeeksforGeeks" |
| 15 | + |
| 16 | +class Individual(object): |
| 17 | + ''' |
| 18 | + Class representing individual in population |
| 19 | + ''' |
| 20 | + def __init__(self, chromosome): |
| 21 | + self.chromosome = chromosome |
| 22 | + self.fitness = self.cal_fitness() |
| 23 | + |
| 24 | + @classmethod |
| 25 | + def mutated_genes(self): |
| 26 | + ''' |
| 27 | + Create random genes for mutation |
| 28 | + ''' |
| 29 | + global GENES |
| 30 | + gene = random.choice(GENES) |
| 31 | + return gene |
| 32 | + |
| 33 | + @classmethod |
| 34 | + def create_gnome(self): |
| 35 | + ''' |
| 36 | + Create chromosome or string of genes |
| 37 | + ''' |
| 38 | + global TARGET |
| 39 | + gnome_len = len(TARGET) |
| 40 | + return [self.mutated_genes() for _ in range(gnome_len)] |
| 41 | + |
| 42 | + def mate(self, par2): |
| 43 | + ''' |
| 44 | + Perform mating and produce new offspring |
| 45 | + ''' |
| 46 | + |
| 47 | + # Chromosome for offspring |
| 48 | + child_chromosome = [] |
| 49 | + for gp1, gp2 in zip(self.chromosome, par2.chromosome): |
| 50 | + |
| 51 | + # Random probability |
| 52 | + prob = random.random() |
| 53 | + |
| 54 | + # If prob is less than 0.45, insert gene |
| 55 | + # from parent 1 |
| 56 | + if prob < 0.45: |
| 57 | + child_chromosome.append(gp1) |
| 58 | + |
| 59 | + # If prob is between 0.45 and 0.90, insert |
| 60 | + # gene from parent 2 |
| 61 | + elif prob < 0.90: |
| 62 | + child_chromosome.append(gp2) |
| 63 | + |
| 64 | + # Otherwise insert random gene (mutate), |
| 65 | + # for maintaining diversity |
| 66 | + else: |
| 67 | + child_chromosome.append(self.mutated_genes()) |
| 68 | + |
| 69 | + # Create new Individual (offspring) using |
| 70 | + # generated chromosome for offspring |
| 71 | + return Individual(child_chromosome) |
| 72 | + |
| 73 | + def cal_fitness(self): |
| 74 | + ''' |
| 75 | + Calculate fitness score, it is the number of |
| 76 | + characters in string which differ from target |
| 77 | + string. |
| 78 | + ''' |
| 79 | + global TARGET |
| 80 | + fitness = 0 |
| 81 | + for gs, gt in zip(self.chromosome, TARGET): |
| 82 | + if gs != gt: |
| 83 | + fitness += 1 |
| 84 | + return fitness |
| 85 | + |
| 86 | +# Driver code |
| 87 | +def main(): |
| 88 | + global POPULATION_SIZE |
| 89 | + |
| 90 | + # Current generation |
| 91 | + generation = 1 |
| 92 | + |
| 93 | + found = False |
| 94 | + population = [] |
| 95 | + |
| 96 | + # Create initial population |
| 97 | + for _ in range(POPULATION_SIZE): |
| 98 | + gnome = Individual.create_gnome() # Fixed this |
| 99 | + population.append(Individual(gnome)) |
| 100 | + |
| 101 | + while not found: |
| 102 | + |
| 103 | + # Sort the population in increasing order of fitness score |
| 104 | + population = sorted(population, key = lambda x:x.fitness) |
| 105 | + |
| 106 | + # If the individual having the lowest fitness score is 0, |
| 107 | + # we have reached the target |
| 108 | + if population[0].fitness <= 0: |
| 109 | + found = True |
| 110 | + break |
| 111 | + |
| 112 | + # Otherwise, generate new offsprings for new generation |
| 113 | + new_generation = [] |
| 114 | + |
| 115 | + # Perform Elitism, that means 10% of fittest population |
| 116 | + # goes to the next generation |
| 117 | + s = int((10 * POPULATION_SIZE) / 100) |
| 118 | + new_generation.extend(population[:s]) |
| 119 | + |
| 120 | + # From 50% of the fittest population, individuals |
| 121 | + # will mate to produce offspring |
| 122 | + s = int((90 * POPULATION_SIZE) / 100) |
| 123 | + for _ in range(s): |
| 124 | + parent1 = random.choice(population[:50]) |
| 125 | + parent2 = random.choice(population[:50]) |
| 126 | + child = parent1.mate(parent2) |
| 127 | + new_generation.append(child) |
| 128 | + |
| 129 | + population = new_generation |
| 130 | + |
| 131 | + # Print current generation details |
| 132 | + print("Generation: {}\tString: {}\tFitness: {}".format( |
| 133 | + generation, |
| 134 | + "".join(population[0].chromosome), |
| 135 | + population[0].fitness)) |
| 136 | + |
| 137 | + generation += 1 |
| 138 | + |
| 139 | + # Print final result |
| 140 | + print("Generation: {}\tString: {}\tFitness: {}".format( |
| 141 | + generation, |
| 142 | + "".join(population[0].chromosome), |
| 143 | + population[0].fitness)) |
| 144 | + |
| 145 | +if __name__ == '__main__': |
| 146 | + main() |
0 commit comments