|
| 1 | +""" |
| 2 | +Graph Coloring Problem is a classic problem in graph theory. |
| 3 | +The task is to assign colors to the vertices of a graph so that no two adjacent vertices |
| 4 | +share the same color, and the number of colors used is minimized. |
| 5 | +
|
| 6 | +Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring |
| 7 | +""" |
| 8 | + |
| 9 | + |
| 10 | +def is_safe(graph: list[list[int]], color: list[int], v: int, c: int) -> bool: |
| 11 | + """ |
| 12 | + Helper function to check if it is safe to color vertex `v` with color `c`. |
| 13 | +
|
| 14 | + Parameters: |
| 15 | + graph (list[list[int]]): The adjacency matrix of the graph. |
| 16 | + color (list[int]): The list of colors assigned to each vertex. |
| 17 | + v (int): The vertex to check. |
| 18 | + c (int): The color to be assigned. |
| 19 | +
|
| 20 | + Returns: |
| 21 | + bool: True if it's safe to assign color `c` to vertex `v`, otherwise False. |
| 22 | +
|
| 23 | + Example: |
| 24 | + >>> graph = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] |
| 25 | + >>> color = [-1, -1, -1] |
| 26 | + >>> is_safe(graph, color, 0, 1) |
| 27 | + True |
| 28 | + """ |
| 29 | + return all(not (graph[v][i] == 1 and color[i] == c) for i in range(len(graph))) |
| 30 | + |
| 31 | + |
| 32 | +def graph_coloring_util( |
| 33 | + graph: list[list[int]], m: int, color: list[int], v: int |
| 34 | +) -> bool: |
| 35 | + """ |
| 36 | + Utility function that uses backtracking to solve the m-coloring problem. |
| 37 | +
|
| 38 | + Parameters: |
| 39 | + graph (list[list[int]]): The adjacency matrix of the graph. |
| 40 | + m (int): The maximum number of colors. |
| 41 | + color (list[int]): The list of colors assigned to each vertex. |
| 42 | + v (int): The current vertex to be colored. |
| 43 | +
|
| 44 | + Returns: |
| 45 | + bool: True if all vertices are successfully colored, otherwise False. |
| 46 | +
|
| 47 | + Example: |
| 48 | + >>> graph = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] |
| 49 | + >>> color = [-1, -1, -1] |
| 50 | + >>> graph_coloring_util(graph, 3, color, 0) |
| 51 | + True |
| 52 | + """ |
| 53 | + if v == len(graph): |
| 54 | + return True |
| 55 | + |
| 56 | + for c in range(1, m + 1): |
| 57 | + if is_safe(graph, color, v, c): |
| 58 | + color[v] = c |
| 59 | + if graph_coloring_util(graph, m, color, v + 1): |
| 60 | + return True |
| 61 | + color[v] = -1 # Backtrack |
| 62 | + |
| 63 | + return False |
| 64 | + |
| 65 | + |
| 66 | +def graph_coloring(graph: list[list[int]], m: int) -> bool: |
| 67 | + """ |
| 68 | + Solves the m-coloring problem using backtracking. |
| 69 | +
|
| 70 | + Parameters: |
| 71 | + graph (list[list[int]]): The adjacency matrix of the graph. |
| 72 | + m (int): The maximum number of colors. |
| 73 | +
|
| 74 | + Returns: |
| 75 | + bool: True if the graph can be colored with `m` colors, otherwise False. |
| 76 | +
|
| 77 | + Example: |
| 78 | + >>> graph = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] |
| 79 | + >>> graph_coloring(graph, 3) |
| 80 | + True |
| 81 | + """ |
| 82 | + color = [-1] * len(graph) |
| 83 | + return graph_coloring_util(graph, m, color, 0) |
0 commit comments