|
| 1 | +# Function to calculate determinant of a 2x2 matrix |
| 2 | +def determinant(a: float, b: float, c: float, d: float) -> float: |
| 3 | + """ |
| 4 | + Calculates the determinant of a 2x2 matrix: |
| 5 | +
|
| 6 | + | a b | |
| 7 | + | c d | |
| 8 | +
|
| 9 | + Args: |
| 10 | + a, b, c, d (float): Elements of the 2x2 matrix. |
| 11 | +
|
| 12 | + Returns: |
| 13 | + float: The determinant of the matrix. |
| 14 | + """ |
| 15 | + return a * d - c * b |
| 16 | + |
| 17 | + |
| 18 | +# Function to compute the line equation coefficients from two points |
| 19 | +def line_coefficients(p1: list[float] | tuple, p2: list[float] | tuple) -> tuple: |
| 20 | + """ |
| 21 | + Computes the coefficients A, B, C of the line equation Ax + By + C = 0 |
| 22 | + from two points. |
| 23 | +
|
| 24 | + Args: |
| 25 | + p1 (List[float] | tuple): First point (x, y). |
| 26 | + p2 (List[float] | tuple): Second point (x, y). |
| 27 | +
|
| 28 | + Returns: |
| 29 | + tuple: Coefficients (A, B, C) of the line equation. |
| 30 | + """ |
| 31 | + if p1[0] == p2[0]: # Vertical line |
| 32 | + return 1, 0, p1[0] |
| 33 | + else: # Non-vertical line |
| 34 | + a = (p2[1] - p1[1]) / (p2[0] - p1[0]) |
| 35 | + b = -1 |
| 36 | + c = p2[1] - a * p2[0] |
| 37 | + return a, b, c |
| 38 | + |
| 39 | + |
| 40 | +def segment_intersection( |
| 41 | + v1: list[float] | tuple, |
| 42 | + v2: list[float] | tuple, |
| 43 | + v1_prime: list[float] | tuple, |
| 44 | + v2_prime: list[float] | tuple, |
| 45 | + as_segments: bool = True, |
| 46 | +) -> list[float] | None: |
| 47 | + """ |
| 48 | + Finds the intersection point of two line segments or lines, if it exists. |
| 49 | +
|
| 50 | + Args: |
| 51 | + v1 (List[float] | tuple): First point of the first segment (x, y). |
| 52 | + v2 (List[float] | tuple): Second point of the first segment (x, y). |
| 53 | + v1_prime (List[float] | tuple): First point of the second segment (x, y). |
| 54 | + v2_prime (List[float] | tuple): Second point of the second segment (x, y). |
| 55 | + as_segments (bool): treat the inputs as line segments (True) or as infinite lines (False). |
| 56 | +
|
| 57 | + Returns: |
| 58 | + List[float] | None: |
| 59 | + Returns the intersection point [x, y] if the segments/lines intersect, otherwise None. |
| 60 | +
|
| 61 | + References: |
| 62 | + Cramer's rule: https://en.wikipedia.org/wiki/Cramer%27s_rule |
| 63 | +
|
| 64 | + Examples: |
| 65 | + >>> segment_intersection([0, 0], [1, 1], [1, 0], [0, 1]) |
| 66 | + [0.5, 0.5] |
| 67 | +
|
| 68 | + # No intersection |
| 69 | + >>> segment_intersection([0, 0], [1, 1], [2, 2], [3, 3]) is None |
| 70 | + True |
| 71 | +
|
| 72 | + # Parallel lines |
| 73 | + >>> segment_intersection([0, 0], [0, 1], [1, 0], [1, 1]) is None |
| 74 | + True |
| 75 | +
|
| 76 | + # Parallel infinite lines (ignoring segment boundaries) |
| 77 | + >>> segment_intersection([0, 0], [1, 1], [2, 2], [3, 3], as_segments=False) is None |
| 78 | + True |
| 79 | +
|
| 80 | + # Intersecting infinite lines |
| 81 | + >>> segment_intersection([0, 0], [1, 1], [1, 0], [0, 1], as_segments=False) |
| 82 | + [0.5, 0.5] |
| 83 | + """ |
| 84 | + |
| 85 | + # Compute line coefficients for the two segments/lines |
| 86 | + a, b, c = line_coefficients(v1, v2) |
| 87 | + a_prime, b_prime, c_prime = line_coefficients(v1_prime, v2_prime) |
| 88 | + |
| 89 | + # Calculate the determinant (D) of the coefficient matrix |
| 90 | + d = determinant(a, b, a_prime, b_prime) |
| 91 | + |
| 92 | + if d == 0: |
| 93 | + # If D == 0, the lines are parallel or coincident (no unique solution) |
| 94 | + return None |
| 95 | + |
| 96 | + # Cramer's rule to solve for x and y |
| 97 | + dx = determinant(-c, b, -c_prime, b_prime) |
| 98 | + dy = determinant(a, -c, a_prime, -c_prime) |
| 99 | + |
| 100 | + # Intersection point of the lines |
| 101 | + x, y = dx / d, dy / d |
| 102 | + |
| 103 | + if as_segments: |
| 104 | + # Check if the intersection point lies within the bounds of both line segments |
| 105 | + if ( |
| 106 | + min(v1[0], v2[0]) <= x <= max(v1[0], v2[0]) |
| 107 | + and min(v1_prime[0], v2_prime[0]) <= x <= max(v1_prime[0], v2_prime[0]) |
| 108 | + and min(v1[1], v2[1]) <= y <= max(v1[1], v2[1]) |
| 109 | + and min(v1_prime[1], v2_prime[1]) <= y <= max(v1_prime[1], v2_prime[1]) |
| 110 | + ): |
| 111 | + return [x, y] |
| 112 | + |
| 113 | + return None |
| 114 | + else: |
| 115 | + # Return the intersection point of the infinite lines |
| 116 | + return [x, y] |
0 commit comments