|
1 | 1 | import numpy as np
|
2 |
| -import sympy as sp |
3 | 2 |
|
| 3 | +class GeneticAlgorithmOptimizer: |
| 4 | + def __init__(self, func, bounds, population_size=100, generations=500, crossover_prob=0.9, mutation_prob=0.01): |
| 5 | + """ |
| 6 | + Initialize the Genetic Algorithm optimizer. |
| 7 | +
|
| 8 | + :param func: The function to optimize. |
| 9 | + :param bounds: List of tuples defining the lower and upper bounds for each variable. |
| 10 | + :param population_size: Number of individuals in the population. |
| 11 | + :param generations: Number of generations to evolve. |
| 12 | + :param crossover_prob: Probability of crossover. |
| 13 | + :param mutation_prob: Probability of mutation. |
| 14 | + """ |
| 15 | + self.func = func |
| 16 | + self.bounds = np.array(bounds) |
| 17 | + self.population_size = population_size |
| 18 | + self.generations = generations |
| 19 | + self.crossover_prob = crossover_prob |
| 20 | + self.mutation_prob = mutation_prob |
| 21 | + self.num_variables = len(bounds) |
| 22 | + |
| 23 | + def initialize_population(self): |
| 24 | + """ |
| 25 | + Initialize a population of random solutions within the bounds. |
| 26 | + """ |
| 27 | + return np.random.uniform(low=self.bounds[:, 0], high=self.bounds[:, 1], size=(self.population_size, self.num_variables)) |
| 28 | + |
| 29 | + def fitness(self, individual): |
| 30 | + """ |
| 31 | + Evaluate the fitness of an individual. |
| 32 | + In minimization problems, we aim to minimize the function value. |
| 33 | + """ |
| 34 | + return self.func(*individual) |
| 35 | + |
| 36 | + def select_parents(self, population, fitness_scores): |
| 37 | + """ |
| 38 | + Select parents using tournament selection. |
| 39 | + """ |
| 40 | + selected_indices = np.random.choice(range(self.population_size), size=2, replace=False) |
| 41 | + return population[selected_indices[np.argmin(fitness_scores[selected_indices])]] |
| 42 | + |
| 43 | + def crossover(self, parent1, parent2): |
| 44 | + """ |
| 45 | + Perform one-point crossover to create offspring. |
| 46 | + Skip crossover for single-variable functions. |
| 47 | + """ |
| 48 | + if self.num_variables == 1: |
| 49 | + return parent1, parent2 # No crossover needed for single-variable functions |
| 50 | + |
| 51 | + if np.random.rand() < self.crossover_prob: |
| 52 | + point = np.random.randint(1, self.num_variables) # Updated to handle the edge case |
| 53 | + child1 = np.concatenate((parent1[:point], parent2[point:])) |
| 54 | + child2 = np.concatenate((parent2[:point], parent1[point:])) |
| 55 | + return child1, child2 |
| 56 | + return parent1, parent2 |
| 57 | + |
| 58 | + def mutate(self, individual): |
| 59 | + """ |
| 60 | + Apply mutation to an individual with a given mutation probability. |
| 61 | + """ |
| 62 | + if np.random.rand() < self.mutation_prob: |
| 63 | + index = np.random.randint(0, self.num_variables) |
| 64 | + individual[index] = np.random.uniform(self.bounds[index, 0], self.bounds[index, 1]) |
| 65 | + return individual |
| 66 | + |
| 67 | + def evolve(self): |
| 68 | + """ |
| 69 | + Run the genetic algorithm for a number of generations. |
| 70 | + """ |
| 71 | + population = self.initialize_population() |
| 72 | + best_solution = None |
| 73 | + best_fitness = float('inf') |
| 74 | + |
| 75 | + for gen in range(self.generations): |
| 76 | + fitness_scores = np.array([self.fitness(individual) for individual in population]) |
| 77 | + |
| 78 | + new_population = [] |
| 79 | + for _ in range(self.population_size // 2): |
| 80 | + parent1 = self.select_parents(population, fitness_scores) |
| 81 | + parent2 = self.select_parents(population, fitness_scores) |
| 82 | + child1, child2 = self.crossover(parent1, parent2) |
| 83 | + child1 = self.mutate(child1) |
| 84 | + child2 = self.mutate(child2) |
| 85 | + new_population.extend([child1, child2]) |
| 86 | + |
| 87 | + population = np.array(new_population) |
| 88 | + |
| 89 | + # Track the best solution |
| 90 | + min_fitness_index = np.argmin(fitness_scores) |
| 91 | + if fitness_scores[min_fitness_index] < best_fitness: |
| 92 | + best_fitness = fitness_scores[min_fitness_index] |
| 93 | + best_solution = population[min_fitness_index] |
| 94 | + |
| 95 | + print(f"Generation {gen + 1}, Best Fitness: {best_fitness}") |
| 96 | + |
| 97 | + return best_solution, best_fitness |
4 | 98 |
|
5 |
| -def parse_function(user_input: str) -> callable: |
6 |
| - """ |
7 |
| - Convert user input from f(x, y) = x^2 + y^2 to a valid Python function. |
8 | 99 |
|
9 |
| - Parameters: |
10 |
| - user_input (str): The user-defined fitness function in string format. |
11 |
| -
|
12 |
| - Returns: |
13 |
| - callable: A callable fitness function. |
14 |
| -
|
15 |
| - Examples: |
16 |
| - >>> parse_function("f(x, y) = x^2 + y^2") |
17 |
| - <function fitness at 0x...> |
18 |
| - """ |
19 |
| - user_input = user_input.strip() |
20 |
| - |
21 |
| - if "=" in user_input: |
22 |
| - _, expression = user_input.split("=", 1) |
23 |
| - expression = expression.strip() |
24 |
| - else: |
25 |
| - raise ValueError("Invalid function format. Please use 'f(x, y) = ...'.") |
26 |
| - |
27 |
| - # Create sympy symbols for x and y |
28 |
| - x, y = sp.symbols("x y") |
29 |
| - |
30 |
| - # Replace power operator and parse the expression safely |
31 |
| - expression = expression.replace("^", "**") |
32 |
| - |
33 |
| - # Use sympy to parse the expression |
34 |
| - func_expr = sp.sympify(expression) |
35 |
| - |
36 |
| - # Create the fitness function using sympy |
37 |
| - fitness = sp.lambdify((x, y), func_expr) |
38 |
| - |
39 |
| - return fitness |
40 |
| - |
41 |
| - |
42 |
| -def genetic_algorithm(user_fitness_function: callable) -> None: |
43 |
| - """ |
44 |
| - Execute the genetic algorithm to optimize the user-defined fitness function. |
45 |
| -
|
46 |
| - Parameters: |
47 |
| - user_fitness_function (callable): The fitness function to be optimized. |
48 |
| -
|
49 |
| - Returns: |
50 |
| - None |
51 |
| -
|
52 |
| - Example: |
53 |
| - >>> def user_fitness_function(x, y): |
54 |
| - ... return x**2 + y**2 |
55 |
| - >>> genetic_algorithm(user_fitness_function) # This will print outputs |
56 |
| - """ |
57 |
| - rng = np.random.default_rng() # New random number generator |
58 |
| - population_size = 100 |
59 |
| - num_generations = 500 |
60 |
| - mutation_rate = 0.01 |
61 |
| - chromosome_length = 2 |
62 |
| - best_fitness = np.inf |
63 |
| - best_solution = None |
64 |
| - |
65 |
| - # Initialize the population |
66 |
| - population = rng.random((population_size, chromosome_length)) |
67 |
| - |
68 |
| - for generation in range(num_generations): |
69 |
| - fitness_values = [] |
70 |
| - |
71 |
| - for individual in population: |
72 |
| - # Call the fitness function with individual x and y |
73 |
| - fitness_value = user_fitness_function(individual[0], individual[1]) |
74 |
| - |
75 |
| - if fitness_value is None or not isinstance(fitness_value, (int, float)): |
76 |
| - print( |
77 |
| - f"Warning: Fitness function returned an invalid value " |
78 |
| - f"for individual {individual}." |
79 |
| - ) |
80 |
| - fitness_value = np.inf |
81 |
| - else: |
82 |
| - print( |
83 |
| - f"Evaluating individual {individual}, Fitness: {fitness_value:.6f}" |
84 |
| - ) |
85 |
| - |
86 |
| - fitness_values.append(fitness_value) |
87 |
| - |
88 |
| - fitness_values = np.array(fitness_values) |
89 |
| - |
90 |
| - # Update the best solution |
91 |
| - best_idx = np.argmin(fitness_values) |
92 |
| - if fitness_values[best_idx] < best_fitness: |
93 |
| - best_fitness = fitness_values[best_idx] |
94 |
| - best_solution = population[best_idx] |
95 |
| - |
96 |
| - print(f"Generation {generation + 1}, Best Fitness: {best_fitness:.6f}") |
97 |
| - |
98 |
| - # Selection |
99 |
| - selected_parents = population[rng.choice(population_size, population_size)] |
100 |
| - |
101 |
| - # Crossover |
102 |
| - offspring = [] |
103 |
| - for i in range(0, population_size - 1, 2): # Ensure even number of parents |
104 |
| - parent1, parent2 = selected_parents[i], selected_parents[i + 1] |
105 |
| - cross_point = rng.integers(1, chromosome_length) |
106 |
| - child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:])) |
107 |
| - child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:])) |
108 |
| - offspring.append(child1) |
109 |
| - offspring.append(child2) |
110 |
| - |
111 |
| - # Handle odd population size if necessary |
112 |
| - if population_size % 2 == 1: |
113 |
| - offspring.append(selected_parents[-1]) # Include last parent if odd |
114 |
| - |
115 |
| - offspring = np.array(offspring) |
116 |
| - |
117 |
| - # Mutation |
118 |
| - mutation_mask = rng.random(offspring.shape) < mutation_rate |
119 |
| - offspring[mutation_mask] = rng.random(np.sum(mutation_mask)) |
120 |
| - |
121 |
| - population = offspring |
122 |
| - |
123 |
| - print("\n--- Optimization Results ---") |
124 |
| - print(f"Best Fitness Value (Minimum): {best_fitness:.6f}") |
125 |
| - print( |
126 |
| - f"Optimal Solution Found: x = {best_solution[0]:.6f}, " |
127 |
| - f"y = {best_solution[1]:.6f}" |
128 |
| - ) |
| 100 | +if __name__ == "__main__": |
| 101 | + # Define the function to optimize |
| 102 | + def func(x, y): |
| 103 | + return x**2 + y**2 # Example: Minimizing x^2 + y^2 |
129 | 104 |
|
130 |
| - function_value = best_fitness |
131 |
| - print( |
132 |
| - f"Function Value at Optimal Solution: f({best_solution[0]:.6f}, " |
133 |
| - f"{best_solution[1]:.6f}) = {function_value:.6f}" |
134 |
| - ) |
| 105 | + # Define the bounds for each variable |
| 106 | + bounds = [(-10, 10), (-10, 10)] |
135 | 107 |
|
| 108 | + # Initialize and run the optimizer |
| 109 | + optimizer = GeneticAlgorithmOptimizer(func=func, bounds=bounds) |
| 110 | + best_solution, best_fitness = optimizer.evolve() |
136 | 111 |
|
137 |
| -if __name__ == "__main__": |
138 |
| - user_input = input( |
139 |
| - "Please enter your fitness function in the format 'f(x, y) = ...':\n" |
140 |
| - ) |
141 |
| - |
142 |
| - try: |
143 |
| - fitness_function = parse_function(user_input) |
144 |
| - genetic_algorithm(fitness_function) |
145 |
| - except (SyntaxError, ValueError) as e: |
146 |
| - print(f"Error: {e}") |
147 |
| - except NameError as e: |
148 |
| - print(f"Error: {e}") |
| 112 | + print("Best Solution:", best_solution) |
| 113 | + print("Best Fitness:", best_fitness) |
0 commit comments