Skip to content

Commit ae08aeb

Browse files
committed
feature/project-euler/problem-912
1 parent 6746319 commit ae08aeb

File tree

2 files changed

+108
-0
lines changed

2 files changed

+108
-0
lines changed

project_euler/problem_912/__init__.py

Whitespace-only changes.

project_euler/problem_912/sol1.py

+108
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,108 @@
1+
"""
2+
Project Euler Problem 912: https://projecteuler.net/problem=912
3+
4+
Problem:
5+
Sum of squares of odd indices where the n-th positive integer does not contain
6+
three consecutive ones in its binary representation.
7+
8+
We define `s_n` as the n-th positive integer that does not contain three
9+
consecutive ones in its binary representation. Define `F(N)` to be the sum of
10+
`n^2` for all `n ≤ N` where `s_n` is odd.
11+
12+
You are given:
13+
F(10) = 199
14+
15+
Find F(10^16) modulo 10^9 + 7.
16+
"""
17+
18+
MOD = 10**9 + 7
19+
20+
21+
def matrix_mult(a, b, mod=MOD):
22+
"""Multiplies two matrices a and b under modulo"""
23+
return [
24+
[
25+
(a[0][0] * b[0][0] + a[0][1] * b[1][0]) % mod,
26+
(a[0][0] * b[0][1] + a[0][1] * b[1][1]) % mod,
27+
],
28+
[
29+
(a[1][0] * b[0][0] + a[1][1] * b[1][0]) % mod,
30+
(a[1][0] * b[0][1] + a[1][1] * b[1][1]) % mod,
31+
],
32+
]
33+
34+
35+
def matrix_pow(mat, exp, mod=MOD):
36+
"""Efficiently computes matrix to the power exp under modulo"""
37+
res = [[1, 0], [0, 1]]
38+
base = mat
39+
40+
while exp > 0:
41+
if exp % 2 == 1:
42+
res = matrix_mult(res, base, mod)
43+
base = matrix_mult(base, base, mod)
44+
exp //= 2
45+
46+
return res
47+
48+
49+
def fib_like_sequence(n, mod=MOD):
50+
"""
51+
Computes the n-th term in the Fibonacci-like sequence of numbers whose binary
52+
representation does not contain three consecutive 1s.
53+
54+
This sequence follows the recurrence relation:
55+
a_n = a_(n-1) + a_(n-2) + a_(n-3)
56+
57+
Returns the sequence value modulo `mod`.
58+
"""
59+
60+
if n == 0:
61+
return 0
62+
if n in (1, 2): # Merge comparisons
63+
return 1
64+
65+
# The recurrence relation can be represented using matrix exponentiation:
66+
t = [[1, 1], [1, 0]] # Fibonacci-like transformation matrix
67+
result = matrix_pow(t, n - 1, mod)
68+
69+
return result[0][0] # This gives the n-th Fibonacci-like term
70+
71+
72+
def calculate_sum_of_squares(limit):
73+
"""
74+
Computes F(limit) which is the sum of squares of indices where s_n is odd.
75+
76+
Arguments:
77+
- limit: up to which value of n we compute F(N)
78+
79+
Returns:
80+
- the sum F(limit) modulo 10^9 + 7
81+
"""
82+
83+
total_sum = 0
84+
85+
for n in range(1, limit + 1):
86+
s_n = fib_like_sequence(n) # Get the n-th sequence number
87+
88+
if s_n % 2 == 1: # Check if s_n is odd
89+
total_sum = (total_sum + n**2) % MOD # Add square of n to total sum
90+
91+
return total_sum
92+
93+
94+
def solution(limit=10**16):
95+
"""
96+
The solution to compute F(limit) efficiently.
97+
This function returns F(10^16) modulo 10^9 + 7.
98+
"""
99+
100+
return calculate_sum_of_squares(limit)
101+
102+
103+
if __name__ == "__main__":
104+
# We are given F(10) = 199, so let's test for N = 10 first.
105+
assert solution(10) == 199
106+
107+
# Now find F(10^16)
108+
print(f"The result is: {solution(10**16)}")

0 commit comments

Comments
 (0)