|
| 1 | +# Title: Dijkstra's Algorithm for finding single source shortest path from scratch |
| 2 | +# Author: Shubham Malik |
| 3 | +# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm |
| 4 | + |
| 5 | +import math |
| 6 | +import sys |
| 7 | +# For storing the vertex set to retreive node with the lowest distance |
| 8 | + |
| 9 | + |
| 10 | +class PriorityQueue: |
| 11 | + # Based on Min Heap |
| 12 | + def __init__(self): |
| 13 | + self.cur_size = 0 |
| 14 | + self.array = [] |
| 15 | + self.pos = {} # To store the pos of node in array |
| 16 | + |
| 17 | + def isEmpty(self): |
| 18 | + return self.cur_size == 0 |
| 19 | + |
| 20 | + def min_heapify(self, idx): |
| 21 | + lc = self.left(idx) |
| 22 | + rc = self.right(idx) |
| 23 | + if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]: |
| 24 | + smallest = lc |
| 25 | + else: |
| 26 | + smallest = idx |
| 27 | + if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]: |
| 28 | + smallest = rc |
| 29 | + if smallest != idx: |
| 30 | + self.swap(idx, smallest) |
| 31 | + self.min_heapify(smallest) |
| 32 | + |
| 33 | + def insert(self, tup): |
| 34 | + # Inserts a node into the Priority Queue |
| 35 | + self.pos[tup[1]] = self.cur_size |
| 36 | + self.cur_size += 1 |
| 37 | + self.array.append((sys.maxsize, tup[1])) |
| 38 | + self.decrease_key((sys.maxsize, tup[1]), tup[0]) |
| 39 | + |
| 40 | + def extract_min(self): |
| 41 | + # Removes and returns the min element at top of priority queue |
| 42 | + min_node = self.array[0][1] |
| 43 | + self.array[0] = self.array[self.cur_size - 1] |
| 44 | + self.cur_size -= 1 |
| 45 | + self.min_heapify(1) |
| 46 | + del self.pos[min_node] |
| 47 | + return min_node |
| 48 | + |
| 49 | + def left(self, i): |
| 50 | + # returns the index of left child |
| 51 | + return 2 * i + 1 |
| 52 | + |
| 53 | + def right(self, i): |
| 54 | + # returns the index of right child |
| 55 | + return 2 * i + 2 |
| 56 | + |
| 57 | + def par(self, i): |
| 58 | + # returns the index of parent |
| 59 | + return math.floor(i / 2) |
| 60 | + |
| 61 | + def swap(self, i, j): |
| 62 | + # swaps array elements at indices i and j |
| 63 | + # update the pos{} |
| 64 | + self.pos[self.array[i][1]] = j |
| 65 | + self.pos[self.array[j][1]] = i |
| 66 | + temp = self.array[i] |
| 67 | + self.array[i] = self.array[j] |
| 68 | + self.array[j] = temp |
| 69 | + |
| 70 | + def decrease_key(self, tup, new_d): |
| 71 | + idx = self.pos[tup[1]] |
| 72 | + # assuming the new_d is atmost old_d |
| 73 | + self.array[idx] = (new_d, tup[1]) |
| 74 | + while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]: |
| 75 | + self.swap(idx, self.par(idx)) |
| 76 | + idx = self.par(idx) |
| 77 | + |
| 78 | + |
| 79 | +class Graph: |
| 80 | + def __init__(self, num): |
| 81 | + self.adjList = {} # To store graph: u -> (v,w) |
| 82 | + self.num_nodes = num # Number of nodes in graph |
| 83 | + # To store the distance from source vertex |
| 84 | + self.dist = [0] * self.num_nodes |
| 85 | + self.par = [-1] * self.num_nodes # To store the path |
| 86 | + |
| 87 | + def add_edge(self, u, v, w): |
| 88 | + # Edge going from node u to v and v to u with weight w |
| 89 | + # u (w)-> v, v (w) -> u |
| 90 | + # Check if u already in graph |
| 91 | + if u in self.adjList.keys(): |
| 92 | + self.adjList[u].append((v, w)) |
| 93 | + else: |
| 94 | + self.adjList[u] = [(v, w)] |
| 95 | + |
| 96 | + # Assuming undirected graph |
| 97 | + if v in self.adjList.keys(): |
| 98 | + self.adjList[v].append((u, w)) |
| 99 | + else: |
| 100 | + self.adjList[v] = [(u, w)] |
| 101 | + |
| 102 | + def show_graph(self): |
| 103 | + # u -> v(w) |
| 104 | + for u in self.adjList: |
| 105 | + print(u, '->', ' -> '.join(str("{}({})".format(v, w)) |
| 106 | + for v, w in self.adjList[u])) |
| 107 | + |
| 108 | + def dijkstra(self, src): |
| 109 | + # Flush old junk values in par[] |
| 110 | + self.par = [-1] * self.num_nodes |
| 111 | + # src is the source node |
| 112 | + self.dist[src] = 0 |
| 113 | + Q = PriorityQueue() |
| 114 | + Q.insert((0, src)) # (dist from src, node) |
| 115 | + for u in self.adjList.keys(): |
| 116 | + if u != src: |
| 117 | + self.dist[u] = sys.maxsize # Infinity |
| 118 | + self.par[u] = -1 |
| 119 | + |
| 120 | + while not Q.isEmpty(): |
| 121 | + u = Q.extract_min() # Returns node with the min dist from source |
| 122 | + # Update the distance of all the neighbours of u and |
| 123 | + # if their prev dist was INFINITY then push them in Q |
| 124 | + for v, w in self.adjList[u]: |
| 125 | + new_dist = self.dist[u] + w |
| 126 | + if self.dist[v] > new_dist: |
| 127 | + if self.dist[v] == sys.maxsize: |
| 128 | + Q.insert((new_dist, v)) |
| 129 | + else: |
| 130 | + Q.decrease_key((self.dist[v], v), new_dist) |
| 131 | + self.dist[v] = new_dist |
| 132 | + self.par[v] = u |
| 133 | + |
| 134 | + # Show the shortest distances from src |
| 135 | + self.show_distances(src) |
| 136 | + |
| 137 | + def show_distances(self, src): |
| 138 | + print("Distance from node: {}".format(src)) |
| 139 | + for u in range(self.num_nodes): |
| 140 | + print('Node {} has distance: {}'.format(u, self.dist[u])) |
| 141 | + |
| 142 | + def show_path(self, src, dest): |
| 143 | + # To show the shortest path from src to dest |
| 144 | + # WARNING: Use it *after* calling dijkstra |
| 145 | + path = [] |
| 146 | + cost = 0 |
| 147 | + temp = dest |
| 148 | + # Backtracking from dest to src |
| 149 | + while self.par[temp] != -1: |
| 150 | + path.append(temp) |
| 151 | + if temp != src: |
| 152 | + for v, w in self.adjList[temp]: |
| 153 | + if v == self.par[temp]: |
| 154 | + cost += w |
| 155 | + break |
| 156 | + temp = self.par[temp] |
| 157 | + path.append(src) |
| 158 | + path.reverse() |
| 159 | + |
| 160 | + print('----Path to reach {} from {}----'.format(dest, src)) |
| 161 | + for u in path: |
| 162 | + print('{}'.format(u), end=' ') |
| 163 | + if u != dest: |
| 164 | + print('-> ', end='') |
| 165 | + |
| 166 | + print('\nTotal cost of path: ', cost) |
| 167 | + |
| 168 | + |
| 169 | +if __name__ == '__main__': |
| 170 | + graph = Graph(9) |
| 171 | + graph.add_edge(0, 1, 4) |
| 172 | + graph.add_edge(0, 7, 8) |
| 173 | + graph.add_edge(1, 2, 8) |
| 174 | + graph.add_edge(1, 7, 11) |
| 175 | + graph.add_edge(2, 3, 7) |
| 176 | + graph.add_edge(2, 8, 2) |
| 177 | + graph.add_edge(2, 5, 4) |
| 178 | + graph.add_edge(3, 4, 9) |
| 179 | + graph.add_edge(3, 5, 14) |
| 180 | + graph.add_edge(4, 5, 10) |
| 181 | + graph.add_edge(5, 6, 2) |
| 182 | + graph.add_edge(6, 7, 1) |
| 183 | + graph.add_edge(6, 8, 6) |
| 184 | + graph.add_edge(7, 8, 7) |
| 185 | + graph.show_graph() |
| 186 | + graph.dijkstra(0) |
| 187 | + graph.show_path(0, 4) |
| 188 | + |
| 189 | +# OUTPUT |
| 190 | +# 0 -> 1(4) -> 7(8) |
| 191 | +# 1 -> 0(4) -> 2(8) -> 7(11) |
| 192 | +# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7) |
| 193 | +# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4) |
| 194 | +# 3 -> 2(7) -> 4(9) -> 5(14) |
| 195 | +# 8 -> 2(2) -> 6(6) -> 7(7) |
| 196 | +# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2) |
| 197 | +# 4 -> 3(9) -> 5(10) |
| 198 | +# 6 -> 5(2) -> 7(1) -> 8(6) |
| 199 | +# Distance from node: 0 |
| 200 | +# Node 0 has distance: 0 |
| 201 | +# Node 1 has distance: 4 |
| 202 | +# Node 2 has distance: 12 |
| 203 | +# Node 3 has distance: 19 |
| 204 | +# Node 4 has distance: 21 |
| 205 | +# Node 5 has distance: 11 |
| 206 | +# Node 6 has distance: 9 |
| 207 | +# Node 7 has distance: 8 |
| 208 | +# Node 8 has distance: 14 |
| 209 | +# ----Path to reach 4 from 0---- |
| 210 | +# 0 -> 7 -> 6 -> 5 -> 4 |
| 211 | +# Total cost of path: 21 |
0 commit comments