We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
np.random.rand
np.random.Generator
1 parent 3222bd3 commit a41ae5bCopy full SHA for a41ae5b
data_structures/kd_tree/example/example_usage.py
@@ -12,7 +12,8 @@
12
points = hypercube_points(num_points, cube_size, num_dimensions)
13
hypercube_kdtree = build_kdtree(points.tolist())
14
15
-query_point = np.random.rand(num_dimensions).tolist()
+rng = np.random.default_rng()
16
+query_point = rng.random(num_dimensions).tolist()
17
18
nearest_point, nearest_dist, nodes_visited = nearest_neighbour_search(
19
hypercube_kdtree, query_point
0 commit comments