|
| 1 | +""" |
| 2 | +Approximate the nth root of a real number using the Newton's Method. |
| 3 | +
|
| 4 | +The nth root of a real number R can be computed with Newton's method, |
| 5 | +which starts with an initial guess x_0 and then iterates using the |
| 6 | +recurrence relation: |
| 7 | +
|
| 8 | +x_{k + 1} = x_k - ((x_k)**n - R)/(n*(x_k)**(n-1)) |
| 9 | +
|
| 10 | +The recurrence relation can be rewritten for computational efficiency: |
| 11 | +
|
| 12 | +x_{k + 1} = (n-1)/n*x_k + R/(n*(x_k)**(n-1)) |
| 13 | +
|
| 14 | +Given a tolerance TOL, a stopping criterion can be set as: |
| 15 | +
|
| 16 | +abs(x_{k + 1} - x_k) < TOL |
| 17 | +
|
| 18 | +References: |
| 19 | +- https://en.wikipedia.org/wiki/Nth_root#Using_Newton's_method |
| 20 | +- Sauer, T. (2011): Numerical analysis. |
| 21 | + USA. Addison-Wesley Publishing Company. |
| 22 | +""" |
| 23 | + |
| 24 | +from math import pow |
| 25 | + |
| 26 | + |
| 27 | +def nth_root(radicand: float, index: int, tolerance: float = 0.0001) -> float: |
| 28 | + """ |
| 29 | + Approximate the nth root of the radicand for the given index |
| 30 | +
|
| 31 | + Args: |
| 32 | + radicand: number from which the root is taken |
| 33 | + index: positive integer which is the degree of the root |
| 34 | + tolerance: positive real number that establishes the stopping criterion |
| 35 | +
|
| 36 | + Returns: |
| 37 | + new_aproximation: approximation of the nth root of the radicand for the |
| 38 | + given index |
| 39 | +
|
| 40 | + Raises: |
| 41 | + TypeError: radicand is not real number |
| 42 | + TypeError: index is not integer |
| 43 | + ValueError: index is not positive integer |
| 44 | + TypeError: tolerance is not real number |
| 45 | + ValueError: tolerance is not positive real number |
| 46 | + ValueError: math domain error |
| 47 | +
|
| 48 | + >>> round(nth_root(9, 2),1) |
| 49 | + 3.0 |
| 50 | +
|
| 51 | + >>> int(round(nth_root(-8, 3, 0.001))) |
| 52 | + -2 |
| 53 | +
|
| 54 | + >>> int(round(nth_root(256, 4, 0.001))) |
| 55 | + 4 |
| 56 | +
|
| 57 | + >>> round(nth_root(2, 2), 5) |
| 58 | + 1.41421 |
| 59 | +
|
| 60 | + >>> round(nth_root(0.25, 2, 0.00000001), 1) |
| 61 | + 0.5 |
| 62 | +
|
| 63 | + >>> round(nth_root(-8/27, 3, 0.0000001), 5) |
| 64 | + -0.66667 |
| 65 | +
|
| 66 | + >>> nth_root(0, 2, 0.1) |
| 67 | + 0.0 |
| 68 | +
|
| 69 | + >>> nth_root(0.0, 5) |
| 70 | + 0.0 |
| 71 | +
|
| 72 | + >>> all(abs(nth_root(k, k, 0.00000001) - k**(1/k)) <= 1e-10 for k in range(1,10)) |
| 73 | + True |
| 74 | +
|
| 75 | + >>> nth_root('invalid input', 3, 0.0001) |
| 76 | + Traceback (most recent call last): |
| 77 | + ... |
| 78 | + TypeError: radicand must be real number, not str |
| 79 | +
|
| 80 | + >>> nth_root(4, 0.5, 0.0001) |
| 81 | + Traceback (most recent call last): |
| 82 | + ... |
| 83 | + TypeError: index must be integer, not float |
| 84 | +
|
| 85 | + >>> nth_root(16, -4, 0.001) |
| 86 | + Traceback (most recent call last): |
| 87 | + ... |
| 88 | + ValueError: index must be positive integer, -4 <= 0 |
| 89 | +
|
| 90 | + >>> nth_root(4, 2, '0.000001') |
| 91 | + Traceback (most recent call last): |
| 92 | + ... |
| 93 | + TypeError: tolerance must be real number, not str |
| 94 | +
|
| 95 | + >>> nth_root(9, 2, -0.01) |
| 96 | + Traceback (most recent call last): |
| 97 | + ... |
| 98 | + ValueError: tolerance must be positive real number, -0.01 <= 0 |
| 99 | +
|
| 100 | + >>> nth_root(-256, 4, 0.0001) |
| 101 | + Traceback (most recent call last): |
| 102 | + ... |
| 103 | + ValueError: math domain error, radicand must be nonnegative for even index |
| 104 | + """ |
| 105 | + if not isinstance(radicand, (int, float)): |
| 106 | + error_message = f"radicand must be real number, not {type(radicand).__name__}" |
| 107 | + raise TypeError(error_message) |
| 108 | + |
| 109 | + if not isinstance(index, int): |
| 110 | + error_message = f"index must be integer, not {type(index).__name__}" |
| 111 | + raise TypeError(error_message) |
| 112 | + |
| 113 | + if index <= 0: |
| 114 | + error_message = f"index must be positive integer, {index} <= 0" |
| 115 | + raise ValueError(error_message) |
| 116 | + |
| 117 | + if not isinstance(tolerance, (int, float)): |
| 118 | + error_message = f"tolerance must be real number, not {type(tolerance).__name__}" |
| 119 | + raise TypeError(error_message) |
| 120 | + |
| 121 | + if tolerance <= 0: |
| 122 | + error_message = f"tolerance must be positive real number, {tolerance} <= 0" |
| 123 | + raise ValueError(error_message) |
| 124 | + |
| 125 | + if radicand < 0 and index % 2 == 0: |
| 126 | + error_message = "math domain error, radicand must be nonnegative for even index" |
| 127 | + raise ValueError(error_message) |
| 128 | + |
| 129 | + if radicand == 0.0: |
| 130 | + return 0.0 |
| 131 | + |
| 132 | + # Set initial guess |
| 133 | + new_aproximation = radicand |
| 134 | + # Set old_aproximation to enter the loop |
| 135 | + old_aproximation = new_aproximation + tolerance + 0.1 |
| 136 | + |
| 137 | + # Iterate as long as the stop criterion is not satisfied |
| 138 | + while tolerance <= abs(old_aproximation - new_aproximation): |
| 139 | + old_aproximation = new_aproximation |
| 140 | + # Compute new_approximation with the recurrence relation described above |
| 141 | + first_summand = (index - 1) / index * old_aproximation |
| 142 | + second_summand = radicand / (index * pow(old_aproximation, index - 1)) |
| 143 | + new_aproximation = first_summand + second_summand |
| 144 | + |
| 145 | + return new_aproximation |
| 146 | + |
| 147 | + |
| 148 | +if __name__ == "__main__": |
| 149 | + import doctest |
| 150 | + |
| 151 | + doctest.testmod() |
0 commit comments