|
| 1 | +""" |
| 2 | +Project Euler Problem 113: https://projecteuler.net/problem=113 |
| 3 | +
|
| 4 | +Working from left-to-right if no digit is exceeded by the digit to its left it is |
| 5 | +called an increasing number; for example, 134468. |
| 6 | +
|
| 7 | +Similarly if no digit is exceeded by the digit to its right it is called a decreasing |
| 8 | +number; for example, 66420. |
| 9 | +
|
| 10 | +We shall call a positive integer that is neither increasing nor decreasing a |
| 11 | +"bouncy" number; for example, 155349. |
| 12 | +
|
| 13 | +As n increases, the proportion of bouncy numbers below n increases such that there |
| 14 | +are only 12951 numbers below one-million that are not bouncy and only 277032 |
| 15 | +non-bouncy numbers below 10^10. |
| 16 | +
|
| 17 | +How many numbers below a googol (10^100) are not bouncy? |
| 18 | +""" |
| 19 | + |
| 20 | + |
| 21 | +def choose(n: int, r: int) -> int: |
| 22 | + """ |
| 23 | + Calculate the binomial coefficient c(n,r) using the multiplicative formula. |
| 24 | + >>> choose(4,2) |
| 25 | + 6 |
| 26 | + >>> choose(5,3) |
| 27 | + 10 |
| 28 | + >>> choose(20,6) |
| 29 | + 38760 |
| 30 | + """ |
| 31 | + ret = 1.0 |
| 32 | + for i in range(1, r + 1): |
| 33 | + ret *= (n + 1 - i) / i |
| 34 | + return round(ret) |
| 35 | + |
| 36 | + |
| 37 | +def non_bouncy_exact(n: int) -> int: |
| 38 | + """ |
| 39 | + Calculate the number of non-bouncy numbers with at most n digits. |
| 40 | + >>> non_bouncy_exact(1) |
| 41 | + 9 |
| 42 | + >>> non_bouncy_exact(6) |
| 43 | + 7998 |
| 44 | + >>> non_bouncy_exact(10) |
| 45 | + 136126 |
| 46 | + """ |
| 47 | + return choose(8 + n, n) + choose(9 + n, n) - 10 |
| 48 | + |
| 49 | + |
| 50 | +def non_bouncy_upto(n: int) -> int: |
| 51 | + """ |
| 52 | + Calculate the number of non-bouncy numbers with at most n digits. |
| 53 | + >>> non_bouncy_upto(1) |
| 54 | + 9 |
| 55 | + >>> non_bouncy_upto(6) |
| 56 | + 12951 |
| 57 | + >>> non_bouncy_upto(10) |
| 58 | + 277032 |
| 59 | + """ |
| 60 | + return sum(non_bouncy_exact(i) for i in range(1, n + 1)) |
| 61 | + |
| 62 | + |
| 63 | +def solution(num_digits: int = 100) -> int: |
| 64 | + """ |
| 65 | + Caclulate the number of non-bouncy numbers less than a googol. |
| 66 | + >>> solution(6) |
| 67 | + 12951 |
| 68 | + >>> solution(10) |
| 69 | + 277032 |
| 70 | + """ |
| 71 | + return non_bouncy_upto(num_digits) |
| 72 | + |
| 73 | + |
| 74 | +if __name__ == "__main__": |
| 75 | + print(f"{solution() = }") |
0 commit comments