|
| 1 | +""" |
| 2 | +This is a pure Python implementation of the merge-insertion sort algorithm |
| 3 | +Source: https://en.wikipedia.org/wiki/Merge-insertion_sort |
| 4 | +
|
| 5 | +For doctests run following command: |
| 6 | +python3 -m doctest -v merge_insertion_sort.py |
| 7 | +or |
| 8 | +python -m doctest -v merge_insertion_sort.py |
| 9 | +
|
| 10 | +For manual testing run: |
| 11 | +python3 merge_insertion_sort.py |
| 12 | +""" |
| 13 | + |
| 14 | +from typing import List |
| 15 | + |
| 16 | + |
| 17 | +def merge_insertion_sort(collection: List[int]) -> List[int]: |
| 18 | + """Pure implementation of merge-insertion sort algorithm in Python |
| 19 | +
|
| 20 | + :param collection: some mutable ordered collection with heterogeneous |
| 21 | + comparable items inside |
| 22 | + :return: the same collection ordered by ascending |
| 23 | +
|
| 24 | + Examples: |
| 25 | + >>> merge_insertion_sort([0, 5, 3, 2, 2]) |
| 26 | + [0, 2, 2, 3, 5] |
| 27 | +
|
| 28 | + >>> merge_insertion_sort([99]) |
| 29 | + [99] |
| 30 | +
|
| 31 | + >>> merge_insertion_sort([-2, -5, -45]) |
| 32 | + [-45, -5, -2] |
| 33 | + """ |
| 34 | + |
| 35 | + def binary_search_insertion(sorted_list, item): |
| 36 | + left = 0 |
| 37 | + right = len(sorted_list) - 1 |
| 38 | + while left <= right: |
| 39 | + middle = (left + right) // 2 |
| 40 | + if left == right: |
| 41 | + if sorted_list[middle] < item: |
| 42 | + left = middle + 1 |
| 43 | + break |
| 44 | + elif sorted_list[middle] < item: |
| 45 | + left = middle + 1 |
| 46 | + else: |
| 47 | + right = middle - 1 |
| 48 | + sorted_list.insert(left, item) |
| 49 | + return sorted_list |
| 50 | + |
| 51 | + def sortlist_2d(list_2d): |
| 52 | + def merge(left, right): |
| 53 | + result = [] |
| 54 | + while left and right: |
| 55 | + if left[0][0] < right[0][0]: |
| 56 | + result.append(left.pop(0)) |
| 57 | + else: |
| 58 | + result.append(right.pop(0)) |
| 59 | + return result + left + right |
| 60 | + |
| 61 | + length = len(list_2d) |
| 62 | + if length <= 1: |
| 63 | + return list_2d |
| 64 | + middle = length // 2 |
| 65 | + return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:])) |
| 66 | + |
| 67 | + if len(collection) <= 1: |
| 68 | + return collection |
| 69 | + |
| 70 | + """ |
| 71 | + Group the items into two pairs, and leave one element if there is a last odd item. |
| 72 | +
|
| 73 | + Example: [999, 100, 75, 40, 10000] |
| 74 | + -> [999, 100], [75, 40]. Leave 10000. |
| 75 | + """ |
| 76 | + two_paired_list = [] |
| 77 | + has_last_odd_item = False |
| 78 | + for i in range(0, len(collection), 2): |
| 79 | + if i == len(collection) - 1: |
| 80 | + has_last_odd_item = True |
| 81 | + else: |
| 82 | + """ |
| 83 | + Sort two-pairs in each groups. |
| 84 | +
|
| 85 | + Example: [999, 100], [75, 40] |
| 86 | + -> [100, 999], [40, 75] |
| 87 | + """ |
| 88 | + if collection[i] < collection[i + 1]: |
| 89 | + two_paired_list.append([collection[i], collection[i + 1]]) |
| 90 | + else: |
| 91 | + two_paired_list.append([collection[i + 1], collection[i]]) |
| 92 | + |
| 93 | + """ |
| 94 | + Sort two_paired_list. |
| 95 | +
|
| 96 | + Example: [100, 999], [40, 75] |
| 97 | + -> [40, 75], [100, 999] |
| 98 | + """ |
| 99 | + sorted_list_2d = sortlist_2d(two_paired_list) |
| 100 | + |
| 101 | + """ |
| 102 | + 40 < 100 is sure because it has already been sorted. |
| 103 | + Generate the sorted_list of them so that you can avoid unnecessary comparison. |
| 104 | +
|
| 105 | + Example: |
| 106 | + group0 group1 |
| 107 | + 40 100 |
| 108 | + 75 999 |
| 109 | + -> |
| 110 | + group0 group1 |
| 111 | + [40, 100] |
| 112 | + 75 999 |
| 113 | + """ |
| 114 | + result = [i[0] for i in sorted_list_2d] |
| 115 | + |
| 116 | + """ |
| 117 | + 100 < 999 is sure because it has already been sorted. |
| 118 | + Put 999 in last of the sorted_list so that you can avoid unnecessary comparison. |
| 119 | +
|
| 120 | + Example: |
| 121 | + group0 group1 |
| 122 | + [40, 100] |
| 123 | + 75 999 |
| 124 | + -> |
| 125 | + group0 group1 |
| 126 | + [40, 100, 999] |
| 127 | + 75 |
| 128 | + """ |
| 129 | + result.append(sorted_list_2d[-1][1]) |
| 130 | + |
| 131 | + """ |
| 132 | + Insert the last odd item left if there is. |
| 133 | +
|
| 134 | + Example: |
| 135 | + group0 group1 |
| 136 | + [40, 100, 999] |
| 137 | + 75 |
| 138 | + -> |
| 139 | + group0 group1 |
| 140 | + [40, 100, 999, 10000] |
| 141 | + 75 |
| 142 | + """ |
| 143 | + if has_last_odd_item: |
| 144 | + pivot = collection[-1] |
| 145 | + result = binary_search_insertion(result, pivot) |
| 146 | + |
| 147 | + """ |
| 148 | + Insert the remaining items. |
| 149 | + In this case, 40 < 75 is sure because it has already been sorted. |
| 150 | + Therefore, you only need to insert 75 into [100, 999, 10000], |
| 151 | + so that you can avoid unnecessary comparison. |
| 152 | +
|
| 153 | + Example: |
| 154 | + group0 group1 |
| 155 | + [40, 100, 999, 10000] |
| 156 | + ^ You don't need to compare with this as 40 < 75 is already sure. |
| 157 | + 75 |
| 158 | + -> |
| 159 | + [40, 75, 100, 999, 10000] |
| 160 | + """ |
| 161 | + is_last_odd_item_inserted_before_this_index = False |
| 162 | + for i in range(len(sorted_list_2d) - 1): |
| 163 | + if result[i] == collection[-i]: |
| 164 | + is_last_odd_item_inserted_before_this_index = True |
| 165 | + pivot = sorted_list_2d[i][1] |
| 166 | + # If last_odd_item is inserted before the item's index, |
| 167 | + # you should forward index one more. |
| 168 | + if is_last_odd_item_inserted_before_this_index: |
| 169 | + result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot) |
| 170 | + else: |
| 171 | + result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot) |
| 172 | + |
| 173 | + return result |
| 174 | + |
| 175 | + |
| 176 | +if __name__ == "__main__": |
| 177 | + user_input = input("Enter numbers separated by a comma:\n").strip() |
| 178 | + unsorted = [int(item) for item in user_input.split(",")] |
| 179 | + print(merge_insertion_sort(unsorted)) |
0 commit comments