|
| 1 | +""" |
| 2 | +Project Euler Problem 95: https://projecteuler.net/problem=95 |
| 3 | +
|
| 4 | +Amicable Chains |
| 5 | +
|
| 6 | +Solution is doing the following: |
| 7 | +- Get relevant prime numbers |
| 8 | +- Iterate over product combination of prime numbers to generate all non-prime |
| 9 | +numbers up to max number, by keeping track of prime factors |
| 10 | +- Calculate the sum of factors for each number |
| 11 | +- Iterate over found some factors to find longest chain |
| 12 | +
|
| 13 | +>>> solution(200000) |
| 14 | +12496 |
| 15 | +
|
| 16 | +""" |
| 17 | + |
| 18 | +from numpy import sqrt |
| 19 | + |
| 20 | + |
| 21 | +def sum_primes(factor_d, num): |
| 22 | + """ |
| 23 | + Calculates the sum of factors from all prime exponents. |
| 24 | +
|
| 25 | + >>> sum_primes({2: 1, 3: 1}, 6) |
| 26 | + 6 |
| 27 | + """ |
| 28 | + tot = 1 |
| 29 | + for p in factor_d: |
| 30 | + comp = 0 |
| 31 | + ex_factor = 1 |
| 32 | + for _ in range(factor_d[p] + 1): |
| 33 | + comp += ex_factor |
| 34 | + ex_factor *= p |
| 35 | + tot *= comp |
| 36 | + return tot - num |
| 37 | + |
| 38 | + |
| 39 | +def generate_primes(n: int): |
| 40 | + """ |
| 41 | + Calculates the list of primes up to and including n. |
| 42 | +
|
| 43 | + >>> generate_primes(6) |
| 44 | + [2, 3, 5] |
| 45 | + """ |
| 46 | + primes = [True] * (n + 1) |
| 47 | + primes[0] = primes[1] = False |
| 48 | + for i in range(2, int(sqrt(n + 1)) + 1): |
| 49 | + if primes[i]: |
| 50 | + j = i * i |
| 51 | + while j <= n: |
| 52 | + primes[j] = False |
| 53 | + j += i |
| 54 | + primes_list = [] |
| 55 | + for i in range(2, len(primes)): |
| 56 | + if primes[i]: |
| 57 | + primes_list += [i] |
| 58 | + return primes_list |
| 59 | + |
| 60 | + |
| 61 | +def multiply(chain, primes, prime, prev_n, n_max, prev_sum, primes_d): |
| 62 | + """ |
| 63 | + Run over all prime combinations to generate non-prime numbers. |
| 64 | +
|
| 65 | + >>> multiply([None] * 3, {2}, 2, 1, 2, 0, {}) |
| 66 | + """ |
| 67 | + |
| 68 | + number = prev_n * prime |
| 69 | + primes_d[prime] = primes_d.get(prime, 0) + 1 |
| 70 | + if prev_n % prime != 0: |
| 71 | + new_sum = prev_sum * (prime + 1) + prev_n |
| 72 | + else: |
| 73 | + new_sum = sum_primes(primes_d, number) |
| 74 | + chain[number] = new_sum |
| 75 | + for p in primes: |
| 76 | + if p >= prime: |
| 77 | + number_n = p * number |
| 78 | + if number_n > n_max: |
| 79 | + break |
| 80 | + multiply(chain, primes, p, number, n_max, new_sum, primes_d.copy()) |
| 81 | + |
| 82 | + |
| 83 | +def find_longest_chain(chain, n_max): |
| 84 | + """ |
| 85 | + Finds the smallest element and length of longest chain |
| 86 | +
|
| 87 | + >>> find_longest_chain([0, 0, 0, 0, 0, 0, 6], 6) |
| 88 | + (6, 1) |
| 89 | + """ |
| 90 | + |
| 91 | + length_max = 0 |
| 92 | + elem_max = 0 |
| 93 | + for i in range(2, len(chain)): |
| 94 | + start = i |
| 95 | + length = 1 |
| 96 | + el = chain[i] |
| 97 | + visited = {i} |
| 98 | + while el > 1 and el <= n_max and el not in visited: |
| 99 | + length += 1 |
| 100 | + visited.add(el) |
| 101 | + el = chain[el] |
| 102 | + |
| 103 | + if el == start and length > length_max: |
| 104 | + length_max = length |
| 105 | + elem_max = start |
| 106 | + |
| 107 | + return elem_max, length_max |
| 108 | + |
| 109 | + |
| 110 | +def solution(n_max: int = 1000000) -> int: |
| 111 | + """ |
| 112 | + Runs the calculation for numbers <= n_max. |
| 113 | +
|
| 114 | + >>> solution(10) |
| 115 | + 6 |
| 116 | + """ |
| 117 | + |
| 118 | + primes = generate_primes(n_max) |
| 119 | + chain = [0] * (n_max + 1) |
| 120 | + for p in primes: |
| 121 | + if p * p > n_max: |
| 122 | + break |
| 123 | + multiply(chain, primes, p, 1, n_max, 0, {}) |
| 124 | + |
| 125 | + chain_start, _ = find_longest_chain(chain, n_max) |
| 126 | + return chain_start |
| 127 | + |
| 128 | + |
| 129 | +if __name__ == "__main__": |
| 130 | + print(f"{solution() = }") |
0 commit comments