|
| 1 | + |
| 2 | +grid = [[0, 1, 0, 0, 0, 0], |
| 3 | + [0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles |
| 4 | + [0, 1, 0, 0, 0, 0], |
| 5 | + [0, 1, 0, 0, 1, 0], |
| 6 | + [0, 0, 0, 0, 1, 0]] |
| 7 | + |
| 8 | +''' |
| 9 | +heuristic = [[9, 8, 7, 6, 5, 4], |
| 10 | + [8, 7, 6, 5, 4, 3], |
| 11 | + [7, 6, 5, 4, 3, 2], |
| 12 | + [6, 5, 4, 3, 2, 1], |
| 13 | + [5, 4, 3, 2, 1, 0]]''' |
| 14 | + |
| 15 | +init = [0, 0] |
| 16 | +goal = [len(grid)-1, len(grid[0])-1] |
| 17 | +cost = 1 |
| 18 | + |
| 19 | +#the cost map which pushes the path closer to the goal |
| 20 | +heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] |
| 21 | +for i in range(len(grid)): |
| 22 | + for j in range(len(grid[0])): |
| 23 | + heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1]) |
| 24 | + if grid[i][j] == 1: |
| 25 | + heuristic[i][j] = 99 #added extra penalty in the heuristic map |
| 26 | + |
| 27 | + |
| 28 | +#the actions we can take |
| 29 | +delta = [[-1, 0 ], # go up |
| 30 | + [ 0, -1], # go left |
| 31 | + [ 1, 0 ], # go down |
| 32 | + [ 0, 1 ]] # go right |
| 33 | + |
| 34 | + |
| 35 | +#function to search the path |
| 36 | +def search(grid,init,goal,cost,heuristic): |
| 37 | + |
| 38 | + closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid |
| 39 | + closed[init[0]][init[1]] = 1 |
| 40 | + action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid |
| 41 | + |
| 42 | + x = init[0] |
| 43 | + y = init[1] |
| 44 | + g = 0 |
| 45 | + f = g + heuristic[init[0]][init[0]] |
| 46 | + cell = [[f, g, x, y]] |
| 47 | + |
| 48 | + found = False # flag that is set when search is complete |
| 49 | + resign = False # flag set if we can't find expand |
| 50 | + |
| 51 | + while not found and not resign: |
| 52 | + if len(cell) == 0: |
| 53 | + resign = True |
| 54 | + return "FAIL" |
| 55 | + else: |
| 56 | + cell.sort()#to choose the least costliest action so as to move closer to the goal |
| 57 | + cell.reverse() |
| 58 | + next = cell.pop() |
| 59 | + x = next[2] |
| 60 | + y = next[3] |
| 61 | + g = next[1] |
| 62 | + f = next[0] |
| 63 | + |
| 64 | + |
| 65 | + if x == goal[0] and y == goal[1]: |
| 66 | + found = True |
| 67 | + else: |
| 68 | + for i in range(len(delta)):#to try out different valid actions |
| 69 | + x2 = x + delta[i][0] |
| 70 | + y2 = y + delta[i][1] |
| 71 | + if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]): |
| 72 | + if closed[x2][y2] == 0 and grid[x2][y2] == 0: |
| 73 | + g2 = g + cost |
| 74 | + f2 = g2 + heuristic[x2][y2] |
| 75 | + cell.append([f2, g2, x2, y2]) |
| 76 | + closed[x2][y2] = 1 |
| 77 | + action[x2][y2] = i |
| 78 | + invpath = [] |
| 79 | + x = goal[0] |
| 80 | + y = goal[1] |
| 81 | + invpath.append([x, y])#we get the reverse path from here |
| 82 | + while x != init[0] or y != init[1]: |
| 83 | + x2 = x - delta[action[x][y]][0] |
| 84 | + y2 = y - delta[action[x][y]][1] |
| 85 | + x = x2 |
| 86 | + y = y2 |
| 87 | + invpath.append([x, y]) |
| 88 | + |
| 89 | + path = [] |
| 90 | + for i in range(len(invpath)): |
| 91 | + path.append(invpath[len(invpath) - 1 - i]) |
| 92 | + print "ACTION MAP" |
| 93 | + for i in range(len(action)): |
| 94 | + print action[i] |
| 95 | + |
| 96 | + return path |
| 97 | + |
| 98 | +a = search(grid,init,goal,cost,heuristic) |
| 99 | +for i in range(len(a)): |
| 100 | + print a[i] |
| 101 | + |
0 commit comments