|
| 1 | +def find_parent(parent, node): |
| 2 | + if parent[node] == node: |
| 3 | + return node |
| 4 | + |
| 5 | + parent[node] = find_parent(parent, parent[node]) |
| 6 | + return parent[node] |
| 7 | + |
| 8 | +def union_set(u, v, parent, rank): |
| 9 | + u = find_parent(parent, u) |
| 10 | + v = find_parent(parent, v) |
| 11 | + |
| 12 | + if rank[u] < rank[v]: |
| 13 | + parent[u] = v |
| 14 | + else: |
| 15 | + parent[v] = u |
| 16 | + if rank[u] == rank[v]: |
| 17 | + rank[u] += 1 |
| 18 | + |
| 19 | +def make_set(n): |
| 20 | + parent = list(range(n)) |
| 21 | + rank = [0] * n |
| 22 | + return parent, rank |
| 23 | + |
| 24 | +def minimum_spanning_tree(edges, n): |
| 25 | + parent, rank = make_set(n) |
| 26 | + edges.sort(key=lambda x: x[2]) |
| 27 | + |
| 28 | + min_wt = 0 |
| 29 | + |
| 30 | + for u, v, w in edges: |
| 31 | + u_parent = find_parent(parent, u) |
| 32 | + v_parent = find_parent(parent, v) |
| 33 | + |
| 34 | + if u_parent != v_parent: |
| 35 | + min_wt += w |
| 36 | + union_set(u_parent, v_parent, parent, rank) |
| 37 | + |
| 38 | + return min_wt |
| 39 | + |
| 40 | +def main(): |
| 41 | + n = int(input("Enter the number of nodes: ")) |
| 42 | + m = int(input("Enter the number of edges: ")) |
| 43 | + |
| 44 | + edges = [] |
| 45 | + for _ in range(m): |
| 46 | + u, v, w = map(int, input().split()) |
| 47 | + edges.append([u, v, w]) |
| 48 | + |
| 49 | + min_weight = minimum_spanning_tree(edges, n) |
| 50 | + |
| 51 | + print(f"Weight of Kruskal's MST : {min_weight}") |
| 52 | + |
| 53 | +if __name__ == "__main__": |
| 54 | + main() |
0 commit comments