|
| 1 | +# Accept No. of Nodes and edges |
| 2 | +n, m = map(int, raw_input().split(" ")) |
| 3 | + |
| 4 | +# Initialising Dictionary of edges |
| 5 | +g = {} |
| 6 | +for i in xrange(n): |
| 7 | + g[i + 1] = [] |
| 8 | + |
| 9 | +""" |
| 10 | +-------------------------------------------------------------------------------- |
| 11 | + Accepting edges of Unweighted Directed Graphs |
| 12 | +-------------------------------------------------------------------------------- |
| 13 | +""" |
| 14 | +for _ in xrange(m): |
| 15 | + x, y = map(int, raw_input().split(" ")) |
| 16 | + g[x].append(y) |
| 17 | + |
| 18 | +""" |
| 19 | +-------------------------------------------------------------------------------- |
| 20 | + Accepting edges of Unweighted Undirected Graphs |
| 21 | +-------------------------------------------------------------------------------- |
| 22 | +""" |
| 23 | +for _ in xrange(m): |
| 24 | + x, y = map(int, raw_input().split(" ")) |
| 25 | + g[x].append(y) |
| 26 | + g[y].append(x) |
| 27 | + |
| 28 | +""" |
| 29 | +-------------------------------------------------------------------------------- |
| 30 | + Accepting edges of Weighted Undirected Graphs |
| 31 | +-------------------------------------------------------------------------------- |
| 32 | +""" |
| 33 | +for _ in xrange(m): |
| 34 | + x, y, r = map(int, raw_input().split(" ")) |
| 35 | + g[x].append([y, r]) |
| 36 | + g[y].append([x, r]) |
| 37 | + |
| 38 | +""" |
| 39 | +-------------------------------------------------------------------------------- |
| 40 | + Depth First Search. |
| 41 | + Args : G - Dictionary of edges |
| 42 | + s - Starting Node |
| 43 | + Vars : vis - Set of visited nodes |
| 44 | + S - Traversal Stack |
| 45 | +-------------------------------------------------------------------------------- |
| 46 | +""" |
| 47 | + |
| 48 | + |
| 49 | +def dfs(G, s): |
| 50 | + vis, S = set([s]), [s] |
| 51 | + print s |
| 52 | + while S: |
| 53 | + flag = 0 |
| 54 | + for i in G[S[-1]]: |
| 55 | + if i not in vis: |
| 56 | + S.append(i) |
| 57 | + vis.add(i) |
| 58 | + flag = 1 |
| 59 | + print i |
| 60 | + break |
| 61 | + if not flag: |
| 62 | + S.pop() |
| 63 | + |
| 64 | + |
| 65 | +""" |
| 66 | +-------------------------------------------------------------------------------- |
| 67 | + Breadth First Search. |
| 68 | + Args : G - Dictionary of edges |
| 69 | + s - Starting Node |
| 70 | + Vars : vis - Set of visited nodes |
| 71 | + Q - Traveral Stack |
| 72 | +-------------------------------------------------------------------------------- |
| 73 | +""" |
| 74 | +from collections import deque |
| 75 | + |
| 76 | + |
| 77 | +def bfs(G, s): |
| 78 | + vis, Q = set([s]), deque([s]) |
| 79 | + print s |
| 80 | + while Q: |
| 81 | + u = Q.popleft() |
| 82 | + for v in G[u]: |
| 83 | + if v not in vis: |
| 84 | + vis.add(v) |
| 85 | + Q.append(v) |
| 86 | + print v |
| 87 | + |
| 88 | + |
| 89 | +""" |
| 90 | +-------------------------------------------------------------------------------- |
| 91 | + Dijkstra's shortest path Algorithm |
| 92 | + Args : G - Dictionary of edges |
| 93 | + s - Starting Node |
| 94 | + Vars : dist - Dictionary storing shortest distance from s to every other node |
| 95 | + known - Set of knows nodes |
| 96 | + path - Preceding node in path |
| 97 | +-------------------------------------------------------------------------------- |
| 98 | +""" |
| 99 | + |
| 100 | + |
| 101 | +def dijk(G, s): |
| 102 | + dist, known, path = {s: 0}, set(), {s: 0} |
| 103 | + while True: |
| 104 | + if len(known) == len(G) - 1: |
| 105 | + break |
| 106 | + mini = 100000 |
| 107 | + for i in dist: |
| 108 | + if i not in known and dist[i] < mini: |
| 109 | + mini = dist[i] |
| 110 | + u = i |
| 111 | + known.add(u) |
| 112 | + for v in G[u]: |
| 113 | + if v[0] not in known: |
| 114 | + if dist[u] + v[1] < dist.get(v[0], 100000): |
| 115 | + dist[v[0]] = dist[u] + v[1] |
| 116 | + path[v[0]] = u |
| 117 | + for i in dist: |
| 118 | + if i != s: |
| 119 | + print dist[i] |
| 120 | + |
| 121 | + |
| 122 | +""" |
| 123 | +-------------------------------------------------------------------------------- |
| 124 | + Topological Sort |
| 125 | +-------------------------------------------------------------------------------- |
| 126 | +""" |
| 127 | +from collections import deque |
| 128 | + |
| 129 | + |
| 130 | +def topo(G, ind=None, Q=[1]): |
| 131 | + if ind == None: |
| 132 | + ind = [0] * (len(G) + 1) # SInce oth Index is ignored |
| 133 | + for u in G: |
| 134 | + for v in G[u]: |
| 135 | + ind[v] += 1 |
| 136 | + Q = deque() |
| 137 | + for i in G: |
| 138 | + if ind[i] == 0: |
| 139 | + Q.append(i) |
| 140 | + if len(Q) == 0: |
| 141 | + return |
| 142 | + v = Q.popleft() |
| 143 | + print v |
| 144 | + for w in G[v]: |
| 145 | + ind[w] -= 1 |
| 146 | + if ind[w] == 0: |
| 147 | + Q.append(w) |
| 148 | + topo(G, ind, Q) |
| 149 | + |
| 150 | + |
| 151 | +""" |
| 152 | +-------------------------------------------------------------------------------- |
| 153 | + Reading an Adjacency matrix |
| 154 | +-------------------------------------------------------------------------------- |
| 155 | +""" |
| 156 | + |
| 157 | + |
| 158 | +def adjm(): |
| 159 | + n, a = input(), [] |
| 160 | + for i in xrange(n): |
| 161 | + a.append(map(int, raw_input().split())) |
| 162 | + return a, n |
| 163 | + |
| 164 | + |
| 165 | +""" |
| 166 | +-------------------------------------------------------------------------------- |
| 167 | + Floyd Warshall's algorithm |
| 168 | + Args : G - Dictionary of edges |
| 169 | + s - Starting Node |
| 170 | + Vars : dist - Dictionary storing shortest distance from s to every other node |
| 171 | + known - Set of knows nodes |
| 172 | + path - Preceding node in path |
| 173 | +
|
| 174 | +-------------------------------------------------------------------------------- |
| 175 | +""" |
| 176 | + |
| 177 | + |
| 178 | +def floy((A, n)): |
| 179 | + dist = list(A) |
| 180 | + path = [[0] * n for i in xrange(n)] |
| 181 | + for k in xrange(n): |
| 182 | + for i in xrange(n): |
| 183 | + for j in xrange(n): |
| 184 | + if dist[i][j] > dist[i][k] + dist[k][j]: |
| 185 | + dist[i][j] = dist[i][k] + dist[k][j] |
| 186 | + path[i][k] = k |
| 187 | + print dist |
| 188 | + |
| 189 | + |
| 190 | +""" |
| 191 | +-------------------------------------------------------------------------------- |
| 192 | + Prim's MST Algorithm |
| 193 | + Args : G - Dictionary of edges |
| 194 | + s - Starting Node |
| 195 | + Vars : dist - Dictionary storing shortest distance from s to nearest node |
| 196 | + known - Set of knows nodes |
| 197 | + path - Preceding node in path |
| 198 | +-------------------------------------------------------------------------------- |
| 199 | +""" |
| 200 | + |
| 201 | + |
| 202 | +def prim(G, s): |
| 203 | + dist, known, path = {s: 0}, set(), {s: 0} |
| 204 | + while True: |
| 205 | + if len(known) == len(G) - 1: |
| 206 | + break |
| 207 | + mini = 100000 |
| 208 | + for i in dist: |
| 209 | + if i not in known and dist[i] < mini: |
| 210 | + mini = dist[i] |
| 211 | + u = i |
| 212 | + known.add(u) |
| 213 | + for v in G[u]: |
| 214 | + if v[0] not in known: |
| 215 | + if v[1] < dist.get(v[0], 100000): |
| 216 | + dist[v[0]] = v[1] |
| 217 | + path[v[0]] = u |
| 218 | + |
| 219 | + |
| 220 | +""" |
| 221 | +-------------------------------------------------------------------------------- |
| 222 | + Accepting Edge list |
| 223 | + Vars : n - Number of nodes |
| 224 | + m - Number of edges |
| 225 | + Returns : l - Edge list |
| 226 | + n - Number of Nodes |
| 227 | +-------------------------------------------------------------------------------- |
| 228 | +""" |
| 229 | + |
| 230 | + |
| 231 | +def edglist(): |
| 232 | + n, m = map(int, raw_input().split(" ")) |
| 233 | + l = [] |
| 234 | + for i in xrange(m): |
| 235 | + l.append(map(int, raw_input().split(' '))) |
| 236 | + return l, n |
| 237 | + |
| 238 | + |
| 239 | +""" |
| 240 | +-------------------------------------------------------------------------------- |
| 241 | + Kruskal's MST Algorithm |
| 242 | + Args : E - Edge list |
| 243 | + n - Number of Nodes |
| 244 | + Vars : s - Set of all nodes as unique disjoint sets (initially) |
| 245 | +-------------------------------------------------------------------------------- |
| 246 | +""" |
| 247 | + |
| 248 | + |
| 249 | +def krusk((E, n)): |
| 250 | + # Sort edges on the basis of distance |
| 251 | + E.sort(reverse=True, key=lambda x: x[2]) |
| 252 | + s = [set([i]) for i in range(1, n + 1)] |
| 253 | + while True: |
| 254 | + if len(s) == 1: |
| 255 | + break |
| 256 | + print s |
| 257 | + x = E.pop() |
| 258 | + for i in xrange(len(s)): |
| 259 | + if x[0] in s[i]: |
| 260 | + break |
| 261 | + for j in xrange(len(s)): |
| 262 | + if x[1] in s[j]: |
| 263 | + if i == j: |
| 264 | + break |
| 265 | + s[j].update(s[i]) |
| 266 | + s.pop(i) |
| 267 | + break |
0 commit comments