Skip to content

Commit 8a5633a

Browse files
RitwickGhoshcclauss
authored andcommitted
Euler Problem 27 solution script Added (#1466)
* Add files via upload * Update DIRECTORY.md * Create sol1.py * Update sol1.py * Create __init__.py * Update DIRECTORY.md * Delete isotonic.py * Update sol1.py * Problem_27_project_euler * project_euler/Problem_27/sol1.py * project_euler/Problem_27/sol1.py * project_euler/problem_27/ * project_euler/problem_27 * project_euler/problem_27 * update sol1 of Euler Problem 27 solution script Added * Remove slow test, wrap long comments, format with psf/black * Delete __init__.py * Add type hints * Add doctests to function is_prime() * Rename project_euler/problem_27/project_euler/problem_27/sol1.pysol1.py to project_euler/problem_27/problem_27_sol1.py
1 parent 357dbd4 commit 8a5633a

File tree

1 file changed

+69
-0
lines changed

1 file changed

+69
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,69 @@
1+
"""
2+
Euler discovered the remarkable quadratic formula:
3+
n2 + n + 41
4+
It turns out that the formula will produce 40 primes for the consecutive values
5+
n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible
6+
by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
7+
The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes
8+
for the consecutive values n = 0 to 79. The product of the coefficients, −79 and
9+
1601, is −126479.
10+
Considering quadratics of the form:
11+
n² + an + b, where |a| < 1000 and |b| < 1000
12+
where |n| is the modulus/absolute value of ne.g. |11| = 11 and |−4| = 4
13+
Find the product of the coefficients, a and b, for the quadratic expression that
14+
produces the maximum number of primes for consecutive values of n, starting with
15+
n = 0.
16+
"""
17+
18+
import math
19+
20+
21+
def is_prime(k: int) -> bool:
22+
"""
23+
Determine if a number is prime
24+
>>> is_prime(10)
25+
False
26+
>>> is_prime(11)
27+
True
28+
"""
29+
if k < 2 or k % 2 == 0:
30+
return False
31+
elif k == 2:
32+
return True
33+
else:
34+
for x in range(3, int(math.sqrt(k) + 1), 2):
35+
if k % x == 0:
36+
return False
37+
return True
38+
39+
40+
def solution(a_limit: int, b_limit: int) -> int:
41+
"""
42+
>>> solution(1000, 1000)
43+
-59231
44+
>>> solution(200, 1000)
45+
-59231
46+
>>> solution(200, 200)
47+
-4925
48+
>>> solution(-1000, 1000)
49+
0
50+
>>> solution(-1000, -1000)
51+
0
52+
"""
53+
longest = [0, 0, 0] # length, a, b
54+
for a in range((a_limit * -1) + 1, a_limit):
55+
for b in range(2, b_limit):
56+
if is_prime(b):
57+
count = 0
58+
n = 0
59+
while is_prime((n ** 2) + (a * n) + b):
60+
count += 1
61+
n += 1
62+
if count > longest[0]:
63+
longest = [count, a, b]
64+
ans = longest[1] * longest[2]
65+
return ans
66+
67+
68+
if __name__ == "__main__":
69+
print(solution(1000, 1000))

0 commit comments

Comments
 (0)