|
| 1 | +import sys |
| 2 | +from collections import defaultdict |
| 3 | + |
| 4 | +class Graph: |
| 5 | + def __init__(self, vertices): |
| 6 | + self.V = vertices |
| 7 | + self.graph = defaultdict(list) |
| 8 | + |
| 9 | + def add_edge(self, u, v, w): |
| 10 | + self.graph[u].append((v, w)) |
| 11 | + |
| 12 | + def bellman_ford(self, src): |
| 13 | + dist = {v: float('inf') for v in range(self.V)} |
| 14 | + dist[src] = 0 |
| 15 | + |
| 16 | + for _ in range(self.V - 1): |
| 17 | + for u in range(self.V): |
| 18 | + for v, w in self.graph[u]: |
| 19 | + if dist[u] + w < dist[v]: |
| 20 | + dist[v] = dist[u] + w |
| 21 | + |
| 22 | + # Check for negative-weight cycles |
| 23 | + for u in range(self.V): |
| 24 | + for v, w in self.graph[u]: |
| 25 | + if dist[u] + w < dist[v]: |
| 26 | + raise ValueError("Graph contains a negative weight cycle") |
| 27 | + |
| 28 | + return dist |
| 29 | + |
| 30 | + def dijkstra(self, src, h): |
| 31 | + dist = {v: float('inf') for v in range(self.V)} |
| 32 | + dist[src] = 0 |
| 33 | + pq = [(0, src)] |
| 34 | + |
| 35 | + while pq: |
| 36 | + d, u = heapq.heappop(pq) |
| 37 | + if d > dist[u]: |
| 38 | + continue |
| 39 | + |
| 40 | + for v, w in self.graph[u]: |
| 41 | + weight = w + h[u] - h[v] |
| 42 | + if dist[u] + weight < dist[v]: |
| 43 | + dist[v] = dist[u] + weight |
| 44 | + heapq.heappush(pq, (dist[v], v)) |
| 45 | + |
| 46 | + return dist |
| 47 | + |
| 48 | + def johnson(self): |
| 49 | + # Step 1: Add a new vertex 'q' |
| 50 | + for u in range(self.V): |
| 51 | + self.graph[self.V].append((u, 0)) |
| 52 | + |
| 53 | + # Step 2: Run Bellman-Ford from vertex 'q' |
| 54 | + h = self.bellman_ford(self.V) |
| 55 | + |
| 56 | + # Step 3: Remove vertex 'q' |
| 57 | + del self.graph[self.V] |
| 58 | + |
| 59 | + # Step 4: Reweight the edges |
| 60 | + for u in range(self.V): |
| 61 | + for index in range(len(self.graph[u])): |
| 62 | + v, w = self.graph[u][index] |
| 63 | + self.graph[u][index] = (v, w + h[u] - h[v]) |
| 64 | + |
| 65 | + # Step 5: Run Dijkstra for each vertex |
| 66 | + all_pairs_distances = {} |
| 67 | + for u in range(self.V): |
| 68 | + all_pairs_distances[u] = self.dijkstra(u, h) |
| 69 | + |
| 70 | + return all_pairs_distances |
| 71 | + |
| 72 | +import heapq |
| 73 | + |
| 74 | +# Example usage |
| 75 | +if __name__ == "__main__": |
| 76 | + g = Graph(5) |
| 77 | + g.add_edge(0, 1, -1) |
| 78 | + g.add_edge(0, 2, 4) |
| 79 | + g.add_edge(1, 2, 3) |
| 80 | + g.add_edge(1, 3, 2) |
| 81 | + g.add_edge(1, 4, 2) |
| 82 | + g.add_edge(3, 1, 1) |
| 83 | + g.add_edge(3, 4, 5) |
| 84 | + g.add_edge(4, 3, -3) |
| 85 | + |
| 86 | + try: |
| 87 | + distances = g.johnson() |
| 88 | + print("All pairs shortest path distances:") |
| 89 | + for u in distances: |
| 90 | + print(f"From vertex {u}: {distances[u]}") |
| 91 | + except ValueError as e: |
| 92 | + print(e) |
0 commit comments