|
| 1 | +# LGBM Classifier Example |
| 2 | +import numpy as np |
| 3 | +from matplotlib import pyplot as plt |
| 4 | +from sklearn.datasets import load_iris |
| 5 | +from sklearn.metrics import ConfusionMatrixDisplay |
| 6 | +from sklearn.model_selection import train_test_split |
| 7 | +from lightgbm import LGBMClassifier |
| 8 | + |
| 9 | + |
| 10 | +def data_handling(data: dict) -> tuple: |
| 11 | + """ |
| 12 | + Splits dataset into features and target labels. |
| 13 | +
|
| 14 | + >>> data_handling({'data': '[5.1, 3.5, 1.4, 0.2]', 'target': [0]}) |
| 15 | + ('[5.1, 3.5, 1.4, 0.2]', [0]) |
| 16 | + >>> data_handling({'data': '[4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]', 'target': [0, 0]}) |
| 17 | + ('[4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]', [0, 0]) |
| 18 | + """ |
| 19 | + return data["data"], data["target"] |
| 20 | + |
| 21 | + |
| 22 | +def lgbm_classifier(features: np.ndarray, target: np.ndarray) -> LGBMClassifier: |
| 23 | + """ |
| 24 | + Trains an LGBM Classifier on the given features and target labels. |
| 25 | +
|
| 26 | + >>> lgbm_classifier(np.array([[5.1, 3.6, 1.4, 0.2]]), np.array([0])) |
| 27 | + LGBMClassifier() |
| 28 | + """ |
| 29 | + classifier = LGBMClassifier() |
| 30 | + classifier.fit(features, target) |
| 31 | + return classifier |
| 32 | + |
| 33 | + |
| 34 | +def main() -> None: |
| 35 | + """ |
| 36 | + Main function to demonstrate LGBM classification on the Iris dataset. |
| 37 | + |
| 38 | + URL for LightGBM documentation: |
| 39 | + https://lightgbm.readthedocs.io/en/latest/ |
| 40 | + """ |
| 41 | + # Load the Iris dataset |
| 42 | + iris = load_iris() |
| 43 | + features, targets = data_handling(iris) |
| 44 | + |
| 45 | + # Split the dataset into training and testing sets |
| 46 | + x_train, x_test, y_train, y_test = train_test_split( |
| 47 | + features, targets, test_size=0.25, random_state=42 |
| 48 | + ) |
| 49 | + |
| 50 | + # Class names for display |
| 51 | + names = iris["target_names"] |
| 52 | + |
| 53 | + # Train the LGBM classifier |
| 54 | + lgbm_clf = lgbm_classifier(x_train, y_train) |
| 55 | + |
| 56 | + # Display the confusion matrix for the classifier |
| 57 | + ConfusionMatrixDisplay.from_estimator( |
| 58 | + lgbm_clf, |
| 59 | + x_test, |
| 60 | + y_test, |
| 61 | + display_labels=names, |
| 62 | + cmap="Blues", |
| 63 | + normalize="true", |
| 64 | + ) |
| 65 | + plt.title("Normalized Confusion Matrix - IRIS Dataset") |
| 66 | + plt.show() |
| 67 | + |
| 68 | + |
| 69 | +if __name__ == "__main__": |
| 70 | + import doctest |
| 71 | + doctest.testmod(verbose=True) |
| 72 | + main() |
0 commit comments