Skip to content

Commit 768015c

Browse files
committed
Lower Case Fixes
1 parent 030ced3 commit 768015c

File tree

1 file changed

+19
-21
lines changed

1 file changed

+19
-21
lines changed

machine_learning/cosine_similarity.py

+19-21
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
import numpy as np
44

55

6-
class Cosine_Similarity:
6+
class cosine_similarity:
77
"""
88
Cosine Similarity Algorithm
99
@@ -23,7 +23,7 @@ def __init__(self) -> None:
2323
"""
2424
self.nlp = spacy.load("en_core_web_md")
2525

26-
def Tokenize(self, text: str) -> list:
26+
def tokenize(self, text: str) -> list:
2727
"""
2828
Tokenizes the input text into a list of lowercased tokens.
2929
@@ -41,7 +41,7 @@ def Tokenize(self, text: str) -> list:
4141
logging.error("An error occurred during Tokenization: ", exc_info=e)
4242
raise e
4343

44-
def Vectorize(self, tokens: list) -> list:
44+
def vectorize(self, tokens: list) -> list:
4545
"""
4646
Converts tokens into their corresponding vector representations.
4747
@@ -62,7 +62,7 @@ def Vectorize(self, tokens: list) -> list:
6262
logging.error("An error occurred during Vectorization: ", exc_info=e)
6363
raise e
6464

65-
def Mean_Vector(self, vectors: list) -> np.ndarray:
65+
def mean_vector(self, vectors: list) -> np.ndarray:
6666
"""
6767
Computes the mean vector of a list of vectors.
6868
@@ -82,7 +82,7 @@ def Mean_Vector(self, vectors: list) -> np.ndarray:
8282
)
8383
raise e
8484

85-
def Dot_Product(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
85+
def dot_product(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
8686
"""
8787
Computes the dot product between two vectors.
8888
@@ -101,7 +101,7 @@ def Dot_Product(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
101101
)
102102
raise e
103103

104-
def Magnitude(self, vector: np.ndarray) -> float:
104+
def magnitude(self, vector: np.ndarray) -> float:
105105
"""
106106
Computes the magnitude (norm) of a vector.
107107
@@ -119,7 +119,7 @@ def Magnitude(self, vector: np.ndarray) -> float:
119119
)
120120
raise e
121121

122-
def Cosine_Similarity(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
122+
def cosine_similarity(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
123123
"""
124124
Computes the cosine similarity between two vectors.
125125
@@ -131,8 +131,8 @@ def Cosine_Similarity(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
131131
- float: The cosine similarity between the two vectors.
132132
"""
133133
try:
134-
dot = self.Dot_Product(vector1, vector2)
135-
magnitude1, magnitude2 = self.Magnitude(vector1), self.Magnitude(vector2)
134+
dot = self.dot_product(vector1, vector2)
135+
magnitude1, magnitude2 = self.magnitude(vector1), self.magnitude(vector2)
136136
if magnitude1 == 0 or magnitude2 == 0:
137137
return 0.0
138138
return dot / (magnitude1 * magnitude2)
@@ -142,7 +142,7 @@ def Cosine_Similarity(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
142142
)
143143
raise e
144144

145-
def Cosine_Similarity_Percentage(self, text1: str, text2: str) -> float:
145+
def cosine_similarity_percentage(self, text1: str, text2: str) -> float:
146146
"""
147147
Computes the cosine similarity percentage between two texts.
148148
@@ -154,16 +154,16 @@ def Cosine_Similarity_Percentage(self, text1: str, text2: str) -> float:
154154
- float: The cosine similarity percentage between the two texts.
155155
"""
156156
try:
157-
tokens1 = self.Tokenize(text1)
158-
tokens2 = self.Tokenize(text2)
157+
tokens1 = self.tokenize(text1)
158+
tokens2 = self.tokenize(text2)
159159

160-
vectors1 = self.Vectorize(tokens1)
161-
vectors2 = self.Vectorize(tokens2)
160+
vectors1 = self.vectorize(tokens1)
161+
vectors2 = self.vectorize(tokens2)
162162

163-
mean_vec1 = self.Mean_Vector(vectors1)
164-
mean_vec2 = self.Mean_Vector(vectors2)
163+
mean_vec1 = self.mean_vector(vectors1)
164+
mean_vec2 = self.mean_vector(vectors2)
165165

166-
similarity = self.Cosine_Similarity(mean_vec1, mean_vec2)
166+
similarity = self.cosine_similarity(mean_vec1, mean_vec2)
167167
return similarity * 100
168168
except Exception as e:
169169
logging.error(
@@ -179,8 +179,6 @@ def Cosine_Similarity_Percentage(self, text1: str, text2: str) -> float:
179179
"""
180180
text1 = "The biggest Infrastructure in the World is Burj Khalifa"
181181
text2 = "The name of the talllest Tower in the world is Burj Khalifa"
182-
183-
similarity_percentage = Cosine_Similarity().Cosine_Similarity_Percentage(
184-
text1, text2
185-
)
182+
183+
similarity_percentage = cosine_similarity().cosine_similarity_percentage(text1, text2)
186184
print(f"Cosine Similarity: {similarity_percentage:.2f}%")

0 commit comments

Comments
 (0)