Skip to content

Commit 6c5fbdc

Browse files
Update lgbm_regressor.py
1 parent daf0f8b commit 6c5fbdc

File tree

1 file changed

+6
-11
lines changed

1 file changed

+6
-11
lines changed

machine_learning/lgbm_regressor.py

+6-11
Original file line numberDiff line numberDiff line change
@@ -17,15 +17,14 @@ def data_handling(data: dict) -> tuple:
1717
return (data["data"], data["target"])
1818

1919

20-
def lgbm_regressor(
21-
features: np.ndarray, target: np.ndarray, test_features: np.ndarray
22-
) -> np.ndarray:
20+
def lgbm_regressor(features: np.ndarray, target: np.ndarray,
21+
test_features: np.ndarray) -> np.ndarray:
2322
"""
24-
>>> lgbm_regressor(np.array([[ 0.12, 0.02, 0.01, 0.25, 0.09]]), np.array([1]),
25-
... np.array([[0.11, 0.03, 0.02, 0.28, 0.08]]))
23+
>>> lgbm_regressor(np.array([[0.12, 0.02, 0.01, 0.25, 0.09]]),
24+
... np.array([1]), np.array([[0.11, 0.03, 0.02, 0.28, 0.08]]))
2625
array([[0.98]], dtype=float32)
2726
"""
28-
lgbm = LGBMRegressor(verbosity=0, random_state=42)
27+
lgbm = LGBMRegressor(random_state=42)
2928
lgbm.fit(features, target)
3029
# Predict target for test data
3130
predictions = lgbm.predict(test_features)
@@ -38,13 +37,9 @@ def main() -> None:
3837
The URL for this algorithm:
3938
https://lightgbm.readthedocs.io/en/latest/
4039
Bank Marketing Dataset is used to demonstrate the algorithm.
41-
42-
Expected error values:
43-
Mean Absolute Error: 0.2 (approx.)
44-
Mean Square Error: 0.15 (approx.)
4540
"""
4641
# Load Bank Marketing dataset
47-
bank_data = fetch_openml(name="bank-marketing", version=1, as_frame=False)
42+
bank_data = fetch_openml(name='bank-marketing', version=1, as_frame=False)
4843
data, target = data_handling(bank_data)
4944
x_train, x_test, y_train, y_test = train_test_split(
5045
data, target, test_size=0.25, random_state=1

0 commit comments

Comments
 (0)