|
| 1 | +""" |
| 2 | +This is a pure Python implementation of the quick sort algorithm |
| 3 | +
|
| 4 | +For doctests run following command: |
| 5 | +python -m doctest -v merge_insertion_sort.py |
| 6 | +or |
| 7 | +python3 -m doctest -v merge_insertion_sort.py |
| 8 | +
|
| 9 | +For manual testing run: |
| 10 | +python merge_insertion_sort.py |
| 11 | +""" |
| 12 | + |
| 13 | + |
| 14 | +def mergeInsertionSort(collection): |
| 15 | + """Pure implementation of merge-insertion sort algorithm in Python |
| 16 | +
|
| 17 | + :param collection: some mutable ordered collection with heterogeneous |
| 18 | + comparable items inside |
| 19 | + :return: the same collection ordered by ascending |
| 20 | +
|
| 21 | + Examples: |
| 22 | + >>> mergeInsertionSort([0, 5, 3, 2, 2]) |
| 23 | + [0, 2, 2, 3, 5] |
| 24 | +
|
| 25 | + >>> mergeInsertionSort([]) |
| 26 | + [] |
| 27 | +
|
| 28 | + >>> mergeInsertionSort([-2, -5, -45]) |
| 29 | + [-45, -5, -2] |
| 30 | + """ |
| 31 | + |
| 32 | + def binary_search_insertion(sorted_list, item): |
| 33 | + left = 0 |
| 34 | + right = len(sorted_list) - 1 |
| 35 | + while left <= right: |
| 36 | + middle = (left + right) // 2 |
| 37 | + if left == right: |
| 38 | + if sorted_list[middle] < item: |
| 39 | + left = middle + 1 |
| 40 | + break |
| 41 | + else: |
| 42 | + break |
| 43 | + elif sorted_list[middle] < item: |
| 44 | + left = middle + 1 |
| 45 | + else: |
| 46 | + right = middle - 1 |
| 47 | + sorted_list.insert(left, item) |
| 48 | + return sorted_list |
| 49 | + |
| 50 | + def sortlist_2d(list_2d): |
| 51 | + def merge(left, right): |
| 52 | + result = [] |
| 53 | + while left and right: |
| 54 | + if left[0][0] < right[0][0]: |
| 55 | + result.append(left.pop(0)) |
| 56 | + else: |
| 57 | + result.append(right.pop(0)) |
| 58 | + return result + left + right |
| 59 | + |
| 60 | + length = len(list_2d) |
| 61 | + if length <= 1: |
| 62 | + return list_2d |
| 63 | + middle = length // 2 |
| 64 | + return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:])) |
| 65 | + |
| 66 | + if len(collection) <= 1: |
| 67 | + return collection |
| 68 | + |
| 69 | + two_paired_list = [] |
| 70 | + is_surplus = False |
| 71 | + for i in range(0, len(collection), 2): |
| 72 | + if i == len(collection) - 1: |
| 73 | + is_surplus = True |
| 74 | + else: |
| 75 | + if collection[i] < collection[i + 1]: |
| 76 | + two_paired_list.append([collection[i], collection[i + 1]]) |
| 77 | + else: |
| 78 | + two_paired_list.append([collection[i + 1], collection[i]]) |
| 79 | + sorted_list_2d = sortlist_2d(two_paired_list) |
| 80 | + result = [i[0] for i in sorted_list_2d] |
| 81 | + result.append(sorted_list_2d[-1][1]) |
| 82 | + |
| 83 | + if is_surplus: |
| 84 | + pivot = collection[-1] |
| 85 | + result = binary_search_insertion(result, pivot) |
| 86 | + |
| 87 | + is_surplus_inserted_before_this_index = False |
| 88 | + for i in range(len(sorted_list_2d) - 1): |
| 89 | + if result[i] == collection[-i]: |
| 90 | + is_surplus_inserted_before_this_index = True |
| 91 | + pivot = sorted_list_2d[i][1] |
| 92 | + if is_surplus_inserted_before_this_index: |
| 93 | + result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot) |
| 94 | + else: |
| 95 | + result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot) |
| 96 | + |
| 97 | + return result |
| 98 | + |
| 99 | + |
| 100 | +if __name__ == "__main__": |
| 101 | + user_input = input("Enter numbers separated by a comma:\n").strip() |
| 102 | + unsorted = [int(item) for item in user_input.split(",")] |
| 103 | + print(mergeInsertionSort(unsorted)) |
0 commit comments