|
| 1 | +import random |
| 2 | + |
| 3 | + |
1 | 4 | def quick_sort_3partition(sorting: list, left: int, right: int) -> None:
|
2 | 5 | """ "
|
3 | 6 | Python implementation of quick sort algorithm with 3-way partition.
|
@@ -88,6 +91,139 @@ def lomuto_partition(sorting: list, left: int, right: int) -> int:
|
88 | 91 | return store_index
|
89 | 92 |
|
90 | 93 |
|
| 94 | +def hoare_partition_by_value( |
| 95 | + array: list, pivot_value: int, start: int = 0, end: int | None = None |
| 96 | +) -> int: |
| 97 | + """ |
| 98 | + Returns the starting index of the right subarray, which contains the |
| 99 | + elements greater than or equal to `pivot_value` |
| 100 | +
|
| 101 | + >>> list_unsorted = [7, 3, 5, 4, 1, 8, 6] |
| 102 | + >>> array = list_unsorted.copy() |
| 103 | + >>> hoare_partition_by_value(array, 5) |
| 104 | + 3 |
| 105 | + >>> array |
| 106 | + [1, 3, 4, 5, 7, 8, 6] |
| 107 | +
|
| 108 | + Edge cases: |
| 109 | + >>> hoare_partition_by_value(list_unsorted.copy(), 0) |
| 110 | + 0 |
| 111 | + >>> hoare_partition_by_value(list_unsorted.copy(), 1) |
| 112 | + 0 |
| 113 | + >>> hoare_partition_by_value(list_unsorted.copy(), 2) |
| 114 | + 1 |
| 115 | + >>> hoare_partition_by_value(list_unsorted.copy(), 8) |
| 116 | + 6 |
| 117 | + >>> hoare_partition_by_value(list_unsorted.copy(), 9) |
| 118 | + 7 |
| 119 | +
|
| 120 | + """ |
| 121 | + if end is None: |
| 122 | + end = len(array) - 1 |
| 123 | + |
| 124 | + left = start |
| 125 | + right = end |
| 126 | + |
| 127 | + while True: |
| 128 | + """ |
| 129 | + In an intermediate iteration, state could look like this: |
| 130 | +
|
| 131 | + lllluuuuuuuuuurrrrr |
| 132 | + ^ ^ |
| 133 | + | | |
| 134 | + left right |
| 135 | +
|
| 136 | + Where the middle values are [u]nknown, since they are not yet traversed. |
| 137 | + `left-1` points to the end of the left subarray. |
| 138 | + `right+1` points to the start of the right subarray. |
| 139 | + """ |
| 140 | + |
| 141 | + while array[left] < pivot_value: |
| 142 | + left += 1 |
| 143 | + if left > end: |
| 144 | + # Right subarray is empty. |
| 145 | + # Signal it by returning an index out of bounds. |
| 146 | + return end + 1 |
| 147 | + while array[right] >= pivot_value: |
| 148 | + right -= 1 |
| 149 | + if right < start: |
| 150 | + # Left subarray is empty |
| 151 | + return start |
| 152 | + |
| 153 | + if left > right: |
| 154 | + break |
| 155 | + |
| 156 | + # Invariants: |
| 157 | + assert all(i < pivot_value for i in array[start:left]) |
| 158 | + assert all(i >= pivot_value for i in array[right + 1 : end]) |
| 159 | + """ |
| 160 | + llllllruuuuulrrrrrr |
| 161 | + ^ ^ |
| 162 | + | | |
| 163 | + left right |
| 164 | + """ |
| 165 | + |
| 166 | + # Swap |
| 167 | + array[left], array[right] = array[right], array[left] |
| 168 | + |
| 169 | + left += 1 |
| 170 | + right -= 1 |
| 171 | + |
| 172 | + return right + 1 |
| 173 | + |
| 174 | + |
| 175 | +def hoare_partition_by_pivot( |
| 176 | + array: list, pivot_index: int, start=0, end: int | None = None |
| 177 | +) -> int: |
| 178 | + """ |
| 179 | + Returns the new pivot index after partitioning |
| 180 | +
|
| 181 | + >>> array = [7, 3, 5, 4, 1, 8, 6] |
| 182 | + >>> array[3] |
| 183 | + 4 |
| 184 | + >>> hoare_partition_by_pivot(array, 3) |
| 185 | + 2 |
| 186 | + >>> array |
| 187 | + [1, 3, 4, 6, 7, 8, 5] |
| 188 | + """ |
| 189 | + if end is None: |
| 190 | + end = len(array) - 1 |
| 191 | + |
| 192 | + def swap(i1, i2): |
| 193 | + array[i1], array[i2] = array[i2], array[i1] |
| 194 | + |
| 195 | + pivot_value = array[pivot_index] |
| 196 | + swap(pivot_index, end) |
| 197 | + greater_or_equal = hoare_partition_by_value( |
| 198 | + array, pivot_value, start=start, end=end - 1 |
| 199 | + ) |
| 200 | + swap(end, greater_or_equal) |
| 201 | + return greater_or_equal |
| 202 | + |
| 203 | + |
| 204 | +def quicksort_hoare(array: list, start: int = 0, end: int | None = None): |
| 205 | + """ |
| 206 | + Quicksort using the Hoare partition scheme: |
| 207 | + - https://en.wikipedia.org/wiki/Quicksort#Hoare_partition_scheme |
| 208 | + - The Art of Computer Programming, Volume 3: Sorting and Searching |
| 209 | +
|
| 210 | + >>> array = [2, 2, 8, 0, 3, 7, 2, 1, 8, 8] |
| 211 | + >>> quicksort_hoare(array) |
| 212 | + >>> array |
| 213 | + [0, 1, 2, 2, 2, 3, 7, 8, 8, 8] |
| 214 | + """ |
| 215 | + if end is None: |
| 216 | + end = len(array) - 1 |
| 217 | + |
| 218 | + if end + 1 - start <= 1: |
| 219 | + return |
| 220 | + |
| 221 | + pivot_index = random.randrange(start, end) |
| 222 | + pivot_index_final = hoare_partition_by_pivot(array, pivot_index, start, end) |
| 223 | + quicksort_hoare(array, start, pivot_index_final - 1) |
| 224 | + quicksort_hoare(array, pivot_index_final + 1, end) |
| 225 | + |
| 226 | + |
91 | 227 | def three_way_radix_quicksort(sorting: list) -> list:
|
92 | 228 | """
|
93 | 229 | Three-way radix quicksort:
|
|
0 commit comments