|
| 1 | +""" |
| 2 | +Project Euler problem 145: https://projecteuler.net/problem=145 |
| 3 | +Author: Vineet Rao |
| 4 | +Problem statement: |
| 5 | +
|
| 6 | +Some positive integers n have the property that the sum [ n + reverse(n) ] |
| 7 | +consists entirely of odd (decimal) digits. |
| 8 | +For instance, 36 + 63 = 99 and 409 + 904 = 1313. |
| 9 | +We will call such numbers reversible; so 36, 63, 409, and 904 are reversible. |
| 10 | +Leading zeroes are not allowed in either n or reverse(n). |
| 11 | +
|
| 12 | +There are 120 reversible numbers below one-thousand. |
| 13 | +
|
| 14 | +How many reversible numbers are there below one-billion (10^9)? |
| 15 | +""" |
| 16 | + |
| 17 | + |
| 18 | +def odd_digits(num: int) -> bool: |
| 19 | + """ |
| 20 | + Check if the number passed as argument has only odd digits. |
| 21 | + >>> odd_digits(123) |
| 22 | + False |
| 23 | + >>> odd_digits(135797531) |
| 24 | + True |
| 25 | + """ |
| 26 | + num_str = str(num) |
| 27 | + for i in ["0", "2", "4", "6", "8"]: |
| 28 | + if i in num_str: |
| 29 | + return False |
| 30 | + return True |
| 31 | + |
| 32 | + |
| 33 | +def solution(max_num: int = 1_000_000_000) -> int: |
| 34 | + """ |
| 35 | + To evaluate the solution, use solution() |
| 36 | + >>> solution(1000) |
| 37 | + 120 |
| 38 | + >>> solution(1_000_000) |
| 39 | + 18720 |
| 40 | + >>> solution(10_000_000) |
| 41 | + 68720 |
| 42 | + """ |
| 43 | + result = 0 |
| 44 | + # All single digit numbers reverse to themselves, so their sums are even |
| 45 | + # Therefore at least one digit in their sum is even |
| 46 | + # Last digit cannot be 0, else it causes leading zeros in reverse |
| 47 | + for num in range(11, max_num): |
| 48 | + if num % 10 == 0: |
| 49 | + continue |
| 50 | + num_sum = num + int(str(num)[::-1]) |
| 51 | + num_is_reversible = odd_digits(num_sum) |
| 52 | + result += 1 if num_is_reversible else 0 |
| 53 | + return result |
| 54 | + |
| 55 | + |
| 56 | +if __name__ == "__main__": |
| 57 | + print(f"{solution() = }") |
0 commit comments