|
1 |
| -""" |
2 |
| -Calculates the Fibonacci sequence using iteration, recursion, memoization, |
3 |
| -and a simplified form of Binet's formula |
4 |
| -
|
5 |
| -NOTE 1: the iterative, recursive, memoization functions are more accurate than |
6 |
| -the Binet's formula function because the Binet formula function uses floats |
7 |
| -
|
8 |
| -NOTE 2: the Binet's formula function is much more limited in the size of inputs |
9 |
| -that it can handle due to the size limitations of Python floats |
10 |
| -NOTE 3: the matrix function is the fastest and most memory efficient for large n |
11 |
| -
|
12 |
| -
|
13 |
| -See benchmark numbers in __main__ for performance comparisons/ |
14 |
| -https://en.wikipedia.org/wiki/Fibonacci_number for more information |
15 |
| -""" |
16 |
| - |
17 |
| -import functools |
18 |
| -from collections.abc import Iterator |
19 |
| -from math import sqrt |
20 |
| -from time import time |
21 |
| - |
22 |
| -import numpy as np |
23 |
| -from numpy import ndarray |
24 |
| - |
25 |
| - |
26 |
| -def time_func(func, *args, **kwargs): |
27 |
| - """ |
28 |
| - Times the execution of a function with parameters |
29 |
| - """ |
30 |
| - start = time() |
31 |
| - output = func(*args, **kwargs) |
32 |
| - end = time() |
33 |
| - if int(end - start) > 0: |
34 |
| - print(f"{func.__name__} runtime: {(end - start):0.4f} s") |
35 |
| - else: |
36 |
| - print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms") |
37 |
| - return output |
38 |
| - |
39 |
| - |
40 |
| -def fib_iterative_yield(n: int) -> Iterator[int]: |
41 |
| - """ |
42 |
| - Calculates the first n (1-indexed) Fibonacci numbers using iteration with yield |
43 |
| - >>> list(fib_iterative_yield(0)) |
44 |
| - [0] |
45 |
| - >>> tuple(fib_iterative_yield(1)) |
46 |
| - (0, 1) |
47 |
| - >>> tuple(fib_iterative_yield(5)) |
48 |
| - (0, 1, 1, 2, 3, 5) |
49 |
| - >>> tuple(fib_iterative_yield(10)) |
50 |
| - (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55) |
51 |
| - >>> tuple(fib_iterative_yield(-1)) |
52 |
| - Traceback (most recent call last): |
53 |
| - ... |
54 |
| - ValueError: n is negative |
55 |
| - """ |
56 |
| - if n < 0: |
57 |
| - raise ValueError("n is negative") |
58 |
| - a, b = 0, 1 |
59 |
| - yield a |
60 |
| - for _ in range(n): |
61 |
| - yield b |
62 |
| - a, b = b, a + b |
63 |
| - |
64 |
| - |
65 |
| -def fib_iterative(n: int) -> list[int]: |
66 |
| - """ |
67 |
| - Calculates the first n (0-indexed) Fibonacci numbers using iteration |
68 |
| - >>> fib_iterative(0) |
69 |
| - [0] |
70 |
| - >>> fib_iterative(1) |
71 |
| - [0, 1] |
72 |
| - >>> fib_iterative(5) |
73 |
| - [0, 1, 1, 2, 3, 5] |
74 |
| - >>> fib_iterative(10) |
75 |
| - [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
76 |
| - >>> fib_iterative(-1) |
77 |
| - Traceback (most recent call last): |
78 |
| - ... |
79 |
| - ValueError: n is negative |
| 1 | +def fibonacci(n, method="iterative"): |
80 | 2 | """
|
81 |
| - if n < 0: |
82 |
| - raise ValueError("n is negative") |
83 |
| - if n == 0: |
84 |
| - return [0] |
85 |
| - fib = [0, 1] |
86 |
| - for _ in range(n - 1): |
87 |
| - fib.append(fib[-1] + fib[-2]) |
88 |
| - return fib |
89 |
| - |
90 |
| - |
91 |
| -def fib_recursive(n: int) -> list[int]: |
92 |
| - """ |
93 |
| - Calculates the first n (0-indexed) Fibonacci numbers using recursion |
94 |
| - >>> fib_iterative(0) |
95 |
| - [0] |
96 |
| - >>> fib_iterative(1) |
97 |
| - [0, 1] |
98 |
| - >>> fib_iterative(5) |
99 |
| - [0, 1, 1, 2, 3, 5] |
100 |
| - >>> fib_iterative(10) |
101 |
| - [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
102 |
| - >>> fib_iterative(-1) |
103 |
| - Traceback (most recent call last): |
104 |
| - ... |
105 |
| - ValueError: n is negative |
106 |
| - """ |
107 |
| - |
108 |
| - def fib_recursive_term(i: int) -> int: |
109 |
| - """ |
110 |
| - Calculates the i-th (0-indexed) Fibonacci number using recursion |
111 |
| - >>> fib_recursive_term(0) |
112 |
| - 0 |
113 |
| - >>> fib_recursive_term(1) |
114 |
| - 1 |
115 |
| - >>> fib_recursive_term(5) |
116 |
| - 5 |
117 |
| - >>> fib_recursive_term(10) |
118 |
| - 55 |
119 |
| - >>> fib_recursive_term(-1) |
120 |
| - Traceback (most recent call last): |
121 |
| - ... |
122 |
| - Exception: n is negative |
123 |
| - """ |
124 |
| - if i < 0: |
125 |
| - raise ValueError("n is negative") |
126 |
| - if i < 2: |
127 |
| - return i |
128 |
| - return fib_recursive_term(i - 1) + fib_recursive_term(i - 2) |
129 |
| - |
130 |
| - if n < 0: |
131 |
| - raise ValueError("n is negative") |
132 |
| - return [fib_recursive_term(i) for i in range(n + 1)] |
133 |
| - |
134 |
| - |
135 |
| -def fib_recursive_cached(n: int) -> list[int]: |
136 |
| - """ |
137 |
| - Calculates the first n (0-indexed) Fibonacci numbers using recursion |
138 |
| - >>> fib_iterative(0) |
139 |
| - [0] |
140 |
| - >>> fib_iterative(1) |
141 |
| - [0, 1] |
142 |
| - >>> fib_iterative(5) |
143 |
| - [0, 1, 1, 2, 3, 5] |
144 |
| - >>> fib_iterative(10) |
145 |
| - [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
146 |
| - >>> fib_iterative(-1) |
147 |
| - Traceback (most recent call last): |
148 |
| - ... |
149 |
| - ValueError: n is negative |
150 |
| - """ |
151 |
| - |
152 |
| - @functools.cache |
153 |
| - def fib_recursive_term(i: int) -> int: |
154 |
| - """ |
155 |
| - Calculates the i-th (0-indexed) Fibonacci number using recursion |
156 |
| - """ |
157 |
| - if i < 0: |
158 |
| - raise ValueError("n is negative") |
159 |
| - if i < 2: |
160 |
| - return i |
161 |
| - return fib_recursive_term(i - 1) + fib_recursive_term(i - 2) |
162 |
| - |
163 |
| - if n < 0: |
164 |
| - raise ValueError("n is negative") |
165 |
| - return [fib_recursive_term(i) for i in range(n + 1)] |
| 3 | + Compute the Fibonacci number using the specified method. |
166 | 4 |
|
167 |
| - |
168 |
| -def fib_memoization(n: int) -> list[int]: |
169 |
| - """ |
170 |
| - Calculates the first n (0-indexed) Fibonacci numbers using memoization |
171 |
| - >>> fib_memoization(0) |
172 |
| - [0] |
173 |
| - >>> fib_memoization(1) |
174 |
| - [0, 1] |
175 |
| - >>> fib_memoization(5) |
176 |
| - [0, 1, 1, 2, 3, 5] |
177 |
| - >>> fib_memoization(10) |
178 |
| - [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
179 |
| - >>> fib_iterative(-1) |
180 |
| - Traceback (most recent call last): |
181 |
| - ... |
182 |
| - ValueError: n is negative |
183 |
| - """ |
184 |
| - if n < 0: |
185 |
| - raise ValueError("n is negative") |
186 |
| - # Cache must be outside recursuive function |
187 |
| - # other it will reset every time it calls itself. |
188 |
| - cache: dict[int, int] = {0: 0, 1: 1, 2: 1} # Prefilled cache |
189 |
| - |
190 |
| - def rec_fn_memoized(num: int) -> int: |
191 |
| - if num in cache: |
192 |
| - return cache[num] |
193 |
| - |
194 |
| - value = rec_fn_memoized(num - 1) + rec_fn_memoized(num - 2) |
195 |
| - cache[num] = value |
196 |
| - return value |
197 |
| - |
198 |
| - return [rec_fn_memoized(i) for i in range(n + 1)] |
199 |
| - |
200 |
| - |
201 |
| -def fib_binet(n: int) -> list[int]: |
202 |
| - """ |
203 |
| - Calculates the first n (0-indexed) Fibonacci numbers using a simplified form |
204 |
| - of Binet's formula: |
205 |
| - https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding |
206 |
| -
|
207 |
| - NOTE 1: this function diverges from fib_iterative at around n = 71, likely |
208 |
| - due to compounding floating-point arithmetic errors |
209 |
| -
|
210 |
| - NOTE 2: this function doesn't accept n >= 1475 because it overflows |
211 |
| - thereafter due to the size limitations of Python floats |
212 |
| - >>> fib_binet(0) |
213 |
| - [0] |
214 |
| - >>> fib_binet(1) |
215 |
| - [0, 1] |
216 |
| - >>> fib_binet(5) |
217 |
| - [0, 1, 1, 2, 3, 5] |
218 |
| - >>> fib_binet(10) |
219 |
| - [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] |
220 |
| - >>> fib_binet(-1) |
221 |
| - Traceback (most recent call last): |
222 |
| - ... |
223 |
| - ValueError: n is negative |
224 |
| - >>> fib_binet(1475) |
225 |
| - Traceback (most recent call last): |
226 |
| - ... |
227 |
| - ValueError: n is too large |
228 |
| - """ |
229 |
| - if n < 0: |
230 |
| - raise ValueError("n is negative") |
231 |
| - if n >= 1475: |
232 |
| - raise ValueError("n is too large") |
233 |
| - sqrt_5 = sqrt(5) |
234 |
| - phi = (1 + sqrt_5) / 2 |
235 |
| - return [round(phi**i / sqrt_5) for i in range(n + 1)] |
236 |
| - |
237 |
| - |
238 |
| -def matrix_pow_np(m: ndarray, power: int) -> ndarray: |
239 |
| - """ |
240 |
| - Raises a matrix to the power of 'power' using binary exponentiation. |
241 |
| -
|
242 |
| - Args: |
243 |
| - m: Matrix as a numpy array. |
244 |
| - power: The power to which the matrix is to be raised. |
| 5 | + Parameters: |
| 6 | + - n (int): The nth Fibonacci number to calculate. |
| 7 | + - method (str): The method to use ("iterative", "recursive", "memoized"). |
245 | 8 |
|
246 | 9 | Returns:
|
247 |
| - The matrix raised to the power. |
248 |
| -
|
249 |
| - Raises: |
250 |
| - ValueError: If power is negative. |
251 |
| -
|
252 |
| - >>> m = np.array([[1, 1], [1, 0]], dtype=int) |
253 |
| - >>> matrix_pow_np(m, 0) # Identity matrix when raised to the power of 0 |
254 |
| - array([[1, 0], |
255 |
| - [0, 1]]) |
256 |
| -
|
257 |
| - >>> matrix_pow_np(m, 1) # Same matrix when raised to the power of 1 |
258 |
| - array([[1, 1], |
259 |
| - [1, 0]]) |
260 |
| -
|
261 |
| - >>> matrix_pow_np(m, 5) |
262 |
| - array([[8, 5], |
263 |
| - [5, 3]]) |
264 |
| -
|
265 |
| - >>> matrix_pow_np(m, -1) |
266 |
| - Traceback (most recent call last): |
267 |
| - ... |
268 |
| - ValueError: power is negative |
269 |
| - """ |
270 |
| - result = np.array([[1, 0], [0, 1]], dtype=int) # Identity Matrix |
271 |
| - base = m |
272 |
| - if power < 0: # Negative power is not allowed |
273 |
| - raise ValueError("power is negative") |
274 |
| - while power: |
275 |
| - if power % 2 == 1: |
276 |
| - result = np.dot(result, base) |
277 |
| - base = np.dot(base, base) |
278 |
| - power //= 2 |
279 |
| - return result |
280 |
| - |
281 |
| - |
282 |
| -def fib_matrix_np(n: int) -> int: |
| 10 | + - int: The nth Fibonacci number. |
283 | 11 | """
|
284 |
| - Calculates the n-th Fibonacci number using matrix exponentiation. |
285 |
| - https://www.nayuki.io/page/fast-fibonacci-algorithms#:~:text= |
286 |
| - Summary:%20The%20two%20fast%20Fibonacci%20algorithms%20are%20matrix |
287 |
| -
|
288 |
| - Args: |
289 |
| - n: Fibonacci sequence index |
290 |
| -
|
291 |
| - Returns: |
292 |
| - The n-th Fibonacci number. |
293 | 12 |
|
294 |
| - Raises: |
295 |
| - ValueError: If n is negative. |
296 |
| -
|
297 |
| - >>> fib_matrix_np(0) |
298 |
| - 0 |
299 |
| - >>> fib_matrix_np(1) |
300 |
| - 1 |
301 |
| - >>> fib_matrix_np(5) |
302 |
| - 5 |
303 |
| - >>> fib_matrix_np(10) |
304 |
| - 55 |
305 |
| - >>> fib_matrix_np(-1) |
306 |
| - Traceback (most recent call last): |
307 |
| - ... |
308 |
| - ValueError: n is negative |
309 |
| - """ |
310 | 13 | if n < 0:
|
311 |
| - raise ValueError("n is negative") |
312 |
| - if n == 0: |
313 |
| - return 0 |
| 14 | + raise ValueError("Input must be a non-negative integer.") |
| 15 | + |
| 16 | + # Iterative Approach (Default) |
| 17 | + if method == "iterative": |
| 18 | + a, b = 0, 1 |
| 19 | + for _ in range(n): |
| 20 | + a, b = b, a + b |
| 21 | + return a |
| 22 | + |
| 23 | + # Recursive Approach |
| 24 | + elif method == "recursive": |
| 25 | + if n == 0: |
| 26 | + return 0 |
| 27 | + elif n == 1: |
| 28 | + return 1 |
| 29 | + return fibonacci(n - 1, "recursive") + fibonacci(n - 2, "recursive") |
| 30 | + |
| 31 | + # Memoized Approach |
| 32 | + elif method == "memoized": |
| 33 | + memo = {} |
| 34 | + |
| 35 | + def fib_memo(n): |
| 36 | + if n in memo: |
| 37 | + return memo[n] |
| 38 | + if n <= 1: |
| 39 | + return n |
| 40 | + memo[n] = fib_memo(n - 1) + fib_memo(n - 2) |
| 41 | + return memo[n] |
| 42 | + |
| 43 | + return fib_memo(n) |
314 | 44 |
|
315 |
| - m = np.array([[1, 1], [1, 0]], dtype=int) |
316 |
| - result = matrix_pow_np(m, n - 1) |
317 |
| - return int(result[0, 0]) |
| 45 | + else: |
| 46 | + raise ValueError("Invalid method. Choose 'iterative', 'recursive', or 'memoized'.") |
318 | 47 |
|
319 | 48 |
|
| 49 | +# Example Usage: |
320 | 50 | if __name__ == "__main__":
|
321 |
| - from doctest import testmod |
322 |
| - |
323 |
| - testmod() |
324 |
| - # Time on an M1 MacBook Pro -- Fastest to slowest |
325 |
| - num = 30 |
326 |
| - time_func(fib_iterative_yield, num) # 0.0012 ms |
327 |
| - time_func(fib_iterative, num) # 0.0031 ms |
328 |
| - time_func(fib_binet, num) # 0.0062 ms |
329 |
| - time_func(fib_memoization, num) # 0.0100 ms |
330 |
| - time_func(fib_recursive_cached, num) # 0.0153 ms |
331 |
| - time_func(fib_recursive, num) # 257.0910 ms |
332 |
| - time_func(fib_matrix_np, num) # 0.0000 ms |
| 51 | + print(fibonacci(10)) # Default (iterative) |
| 52 | + print(fibonacci(10, "recursive")) # Recursive method |
| 53 | + print(fibonacci(10, "memoized")) # Memoized method |
0 commit comments