|
| 1 | +""" |
| 2 | +Earliest Deadline First (EDF) scheduling algorithm |
| 3 | +In EDF, the process with the earliest deadline is selected for execution. |
| 4 | +https://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling |
| 5 | +Author: KelvinPuyam |
| 6 | +""" |
| 7 | + |
| 8 | +from __future__ import annotations |
| 9 | + |
| 10 | + |
| 11 | +def calculate_waiting_times( |
| 12 | + arrival_times: list[int], |
| 13 | + burst_times: list[int], |
| 14 | + deadlines: list[int] |
| 15 | +) -> list[int]: |
| 16 | + """ |
| 17 | + Calculate the waiting times of processes using EDF algorithm. |
| 18 | + Return: List of waiting times for each process. |
| 19 | + """ |
| 20 | + n = len(arrival_times) |
| 21 | + waiting_times = [0] * n |
| 22 | + remaining_times = burst_times.copy() |
| 23 | + |
| 24 | + current_time = 0 |
| 25 | + process_executed = 0 |
| 26 | + while process_executed < n: |
| 27 | + min_deadline = float('inf') |
| 28 | + selected_process = -1 |
| 29 | + for i in range(n): |
| 30 | + if ( |
| 31 | + arrival_times[i] <= current_time |
| 32 | + and remaining_times[i] > 0 |
| 33 | + and deadlines[i] < min_deadline |
| 34 | + ): |
| 35 | + min_deadline = deadlines[i] |
| 36 | + selected_process = i |
| 37 | + |
| 38 | + if selected_process == -1: |
| 39 | + current_time += 1 |
| 40 | + continue |
| 41 | + |
| 42 | + waiting_times[selected_process] = current_time - arrival_times[selected_process] |
| 43 | + current_time += burst_times[selected_process] |
| 44 | + remaining_times[selected_process] = 0 |
| 45 | + process_executed += 1 |
| 46 | + |
| 47 | + return waiting_times |
| 48 | + |
| 49 | +def calculate_turnaround_times( |
| 50 | + burst_times: list[int], |
| 51 | + waiting_times: list[int] |
| 52 | +) -> list[int]: |
| 53 | + """ |
| 54 | + Calculate the turnaround times of processes. |
| 55 | + Return: List of turnaround times for each process. |
| 56 | + """ |
| 57 | + return [burst_times[i] + waiting_times[i] for i in range(len(burst_times))] |
| 58 | + |
| 59 | +def calculate_average_turnaround_time(turnaround_times: list[int]) -> float: |
| 60 | + """ |
| 61 | + Calculate the average turnaround time. |
| 62 | + Return: The average turnaround time. |
| 63 | + """ |
| 64 | + return sum(turnaround_times) / len(turnaround_times) |
| 65 | + |
| 66 | +def calculate_average_waiting_time(waiting_times: list[int]) -> float: |
| 67 | + """ |
| 68 | + Calculate the average waiting time. |
| 69 | + Return: The average waiting time. |
| 70 | + """ |
| 71 | + return sum(waiting_times) / len(waiting_times) |
| 72 | + |
| 73 | +if __name__ == "__main__": |
| 74 | + arrival_times = [0, 1, 2] |
| 75 | + burst_times = [3, 5, 2] |
| 76 | + deadlines = [5, 7, 6] |
| 77 | + |
| 78 | + waiting_times = calculate_waiting_times(arrival_times, burst_times, deadlines) |
| 79 | + turnaround_times = calculate_turnaround_times(burst_times, waiting_times) |
| 80 | + |
| 81 | + average_waiting_time = calculate_average_waiting_time(waiting_times) |
| 82 | + average_turnaround_time = calculate_average_turnaround_time(turnaround_times) |
| 83 | + |
| 84 | + print("Process\tBurst Time\tWaiting Time\tTurnaround Time") |
| 85 | + for i in range(len(arrival_times)): |
| 86 | + print(f"{i+1}\t{burst_times[i]}\t\t{waiting_times[i]}\t\t{turnaround_times[i]}") |
| 87 | + |
| 88 | + print(f"Average waiting time: {average_waiting_time}") |
| 89 | + print(f"Average turnaround time: {average_turnaround_time}") |
0 commit comments