|
| 1 | +""" |
| 2 | + Sparse table is a data structure that allows answering range queries on |
| 3 | + a static number list, i.e. the elements do not change throughout all the queries. |
| 4 | +
|
| 5 | + The implementation below will solve the problem of Range Minimum Query: |
| 6 | + Finding the minimum value of a subset [L..R] of a static number list. |
| 7 | +
|
| 8 | + Overall time complexity: O(nlogn) |
| 9 | + Overall space complexity: O(nlogn) |
| 10 | +
|
| 11 | + Wikipedia link: https://en.wikipedia.org/wiki/Range_minimum_query |
| 12 | +""" |
| 13 | +from math import log2 |
| 14 | + |
| 15 | + |
| 16 | +def build_sparse_table(number_list: list[int]) -> list[list[int]]: |
| 17 | + """ |
| 18 | + Precompute range minimum queries with power of two length and store the precomputed |
| 19 | + values in a table. |
| 20 | +
|
| 21 | + >>> build_sparse_table([8, 1, 0, 3, 4, 9, 3]) |
| 22 | + [[8, 1, 0, 3, 4, 9, 3], [1, 0, 0, 3, 4, 3, 0], [0, 0, 0, 3, 0, 0, 0]] |
| 23 | + >>> build_sparse_table([3, 1, 9]) |
| 24 | + [[3, 1, 9], [1, 1, 0]] |
| 25 | + >>> build_sparse_table([]) |
| 26 | + Traceback (most recent call last): |
| 27 | + ... |
| 28 | + ValueError: empty number list not allowed |
| 29 | + """ |
| 30 | + if not number_list: |
| 31 | + raise ValueError("empty number list not allowed") |
| 32 | + |
| 33 | + length = len(number_list) |
| 34 | + # Initialise sparse_table -- sparse_table[j][i] represents the minimum value of the |
| 35 | + # subset of length (2 ** j) of number_list, starting from index i. |
| 36 | + |
| 37 | + # smallest power of 2 subset length that fully covers number_list |
| 38 | + row = int(log2(length)) + 1 |
| 39 | + sparse_table = [[0 for i in range(length)] for j in range(row)] |
| 40 | + |
| 41 | + # minimum of subset of length 1 is that value itself |
| 42 | + for i, value in enumerate(number_list): |
| 43 | + sparse_table[0][i] = value |
| 44 | + j = 1 |
| 45 | + |
| 46 | + # compute the minimum value for all intervals with size (2 ** j) |
| 47 | + while (1 << j) <= length: |
| 48 | + i = 0 |
| 49 | + # while subset starting from i still have at least (2 ** j) elements |
| 50 | + while (i + (1 << j) - 1) < length: |
| 51 | + # split range [i, i + 2 ** j] and find minimum of 2 halves |
| 52 | + sparse_table[j][i] = min( |
| 53 | + sparse_table[j - 1][i + (1 << (j - 1))], sparse_table[j - 1][i] |
| 54 | + ) |
| 55 | + i += 1 |
| 56 | + j += 1 |
| 57 | + return sparse_table |
| 58 | + |
| 59 | + |
| 60 | +def query(sparse_table: list[list[int]], left_bound: int, right_bound: int) -> int: |
| 61 | + """ |
| 62 | + >>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 0, 4) |
| 63 | + 0 |
| 64 | + >>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 4, 6) |
| 65 | + 3 |
| 66 | + >>> query(build_sparse_table([3, 1, 9]), 2, 2) |
| 67 | + 9 |
| 68 | + >>> query(build_sparse_table([3, 1, 9]), 0, 1) |
| 69 | + 1 |
| 70 | + >>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 0, 11) |
| 71 | + Traceback (most recent call last): |
| 72 | + ... |
| 73 | + IndexError: list index out of range |
| 74 | + >>> query(build_sparse_table([]), 0, 0) |
| 75 | + Traceback (most recent call last): |
| 76 | + ... |
| 77 | + ValueError: empty number list not allowed |
| 78 | + """ |
| 79 | + if left_bound < 0 or right_bound >= len(sparse_table[0]): |
| 80 | + raise IndexError("list index out of range") |
| 81 | + |
| 82 | + # highest subset length of power of 2 that is within range [left_bound, right_bound] |
| 83 | + j = int(log2(right_bound - left_bound + 1)) |
| 84 | + |
| 85 | + # minimum of 2 overlapping smaller subsets: |
| 86 | + # [left_bound, left_bound + 2 ** j - 1] and [right_bound - 2 ** j + 1, right_bound] |
| 87 | + return min(sparse_table[j][right_bound - (1 << j) + 1], sparse_table[j][left_bound]) |
| 88 | + |
| 89 | + |
| 90 | +if __name__ == "__main__": |
| 91 | + from doctest import testmod |
| 92 | + |
| 93 | + testmod() |
| 94 | + print(f"{query(build_sparse_table([3, 1, 9]), 2, 2) = }") |
0 commit comments