|
| 1 | +""" |
| 2 | +https://en.wikipedia.org/wiki/Augmented_matrix |
| 3 | +
|
| 4 | +This algorithm solves simultaneous linear equations of the form |
| 5 | +λa + λb + λc + λd + ... = γ as [λ, λ, λ, λ, ..., γ] |
| 6 | +Where λ & γ are individual coefficients, the no. of equations = no. of coefficients - 1 |
| 7 | +
|
| 8 | +Note in order to work there must exist 1 equation where all instances of λ and γ != 0 |
| 9 | +""" |
| 10 | + |
| 11 | + |
| 12 | +def simplify(current_set: list[list]) -> list[list]: |
| 13 | + """ |
| 14 | + >>> simplify([[1, 2, 3], [4, 5, 6]]) |
| 15 | + [[1.0, 2.0, 3.0], [0.0, 0.75, 1.5]] |
| 16 | + >>> simplify([[5, 2, 5], [5, 1, 10]]) |
| 17 | + [[1.0, 0.4, 1.0], [0.0, 0.2, -1.0]] |
| 18 | + """ |
| 19 | + # Divide each row by magnitude of first term --> creates 'unit' matrix |
| 20 | + duplicate_set = current_set.copy() |
| 21 | + for row_index, row in enumerate(duplicate_set): |
| 22 | + magnitude = row[0] |
| 23 | + for column_index, column in enumerate(row): |
| 24 | + if magnitude == 0: |
| 25 | + current_set[row_index][column_index] = column |
| 26 | + continue |
| 27 | + current_set[row_index][column_index] = column / magnitude |
| 28 | + # Subtract to cancel term |
| 29 | + first_row = current_set[0] |
| 30 | + final_set = [first_row] |
| 31 | + current_set = current_set[1::] |
| 32 | + for row in current_set: |
| 33 | + temp_row = [] |
| 34 | + # If first term is 0, it is already in form we want, so we preserve it |
| 35 | + if row[0] == 0: |
| 36 | + final_set.append(row) |
| 37 | + continue |
| 38 | + for column_index in range(len(row)): |
| 39 | + temp_row.append(first_row[column_index] - row[column_index]) |
| 40 | + final_set.append(temp_row) |
| 41 | + # Create next recursion iteration set |
| 42 | + if len(final_set[0]) != 3: |
| 43 | + current_first_row = final_set[0] |
| 44 | + current_first_column = [] |
| 45 | + next_iteration = [] |
| 46 | + for row in final_set[1::]: |
| 47 | + current_first_column.append(row[0]) |
| 48 | + next_iteration.append(row[1::]) |
| 49 | + resultant = simplify(next_iteration) |
| 50 | + for i in range(len(resultant)): |
| 51 | + resultant[i].insert(0, current_first_column[i]) |
| 52 | + resultant.insert(0, current_first_row) |
| 53 | + final_set = resultant |
| 54 | + return final_set |
| 55 | + |
| 56 | + |
| 57 | +def solve_simultaneous(equations: list[list]) -> list: |
| 58 | + """ |
| 59 | + >>> solve_simultaneous([[1, 2, 3],[4, 5, 6]]) |
| 60 | + [-1.0, 2.0] |
| 61 | + >>> solve_simultaneous([[0, -3, 1, 7],[3, 2, -1, 11],[5, 1, -2, 12]]) |
| 62 | + [6.4, 1.2, 10.6] |
| 63 | + >>> solve_simultaneous([]) |
| 64 | + Traceback (most recent call last): |
| 65 | + ... |
| 66 | + IndexError: solve_simultaneous() requires n lists of length n+1 |
| 67 | + >>> solve_simultaneous([[1, 2, 3],[1, 2]]) |
| 68 | + Traceback (most recent call last): |
| 69 | + ... |
| 70 | + IndexError: solve_simultaneous() requires n lists of length n+1 |
| 71 | + >>> solve_simultaneous([[1, 2, 3],["a", 7, 8]]) |
| 72 | + Traceback (most recent call last): |
| 73 | + ... |
| 74 | + ValueError: solve_simultaneous() requires lists of integers |
| 75 | + >>> solve_simultaneous([[0, 2, 3],[4, 0, 6]]) |
| 76 | + Traceback (most recent call last): |
| 77 | + ... |
| 78 | + ValueError: solve_simultaneous() requires at least 1 full equation |
| 79 | + """ |
| 80 | + if len(equations) == 0: |
| 81 | + raise IndexError("solve_simultaneous() requires n lists of length n+1") |
| 82 | + _length = len(equations) + 1 |
| 83 | + if any(len(item) != _length for item in equations): |
| 84 | + raise IndexError("solve_simultaneous() requires n lists of length n+1") |
| 85 | + for row in equations: |
| 86 | + if any(not isinstance(column, (int, float)) for column in row): |
| 87 | + raise ValueError("solve_simultaneous() requires lists of integers") |
| 88 | + if len(equations) == 1: |
| 89 | + return [equations[0][-1] / equations[0][0]] |
| 90 | + data_set = equations.copy() |
| 91 | + if any(0 in row for row in data_set): |
| 92 | + temp_data = data_set.copy() |
| 93 | + full_row = [] |
| 94 | + for row_index, row in enumerate(temp_data): |
| 95 | + if 0 not in row: |
| 96 | + full_row = data_set.pop(row_index) |
| 97 | + break |
| 98 | + if not full_row: |
| 99 | + raise ValueError("solve_simultaneous() requires at least 1 full equation") |
| 100 | + data_set.insert(0, full_row) |
| 101 | + useable_form = data_set.copy() |
| 102 | + simplified = simplify(useable_form) |
| 103 | + simplified = simplified[::-1] |
| 104 | + solutions: list = [] |
| 105 | + for row in simplified: |
| 106 | + current_solution = row[-1] |
| 107 | + if not solutions: |
| 108 | + if row[-2] == 0: |
| 109 | + solutions.append(0) |
| 110 | + continue |
| 111 | + solutions.append(current_solution / row[-2]) |
| 112 | + continue |
| 113 | + temp_row = row.copy()[: len(row) - 1 :] |
| 114 | + while temp_row[0] == 0: |
| 115 | + temp_row.pop(0) |
| 116 | + if len(temp_row) == 0: |
| 117 | + solutions.append(0) |
| 118 | + continue |
| 119 | + temp_row = temp_row[1::] |
| 120 | + temp_row = temp_row[::-1] |
| 121 | + for column_index, column in enumerate(temp_row): |
| 122 | + current_solution -= column * solutions[column_index] |
| 123 | + solutions.append(current_solution) |
| 124 | + final = [] |
| 125 | + for item in solutions: |
| 126 | + final.append(float(round(item, 5))) |
| 127 | + return final[::-1] |
| 128 | + |
| 129 | + |
| 130 | +if __name__ == "__main__": |
| 131 | + import doctest |
| 132 | + |
| 133 | + doctest.testmod() |
| 134 | + eq = [ |
| 135 | + [2, 1, 1, 1, 1, 4], |
| 136 | + [1, 2, 1, 1, 1, 5], |
| 137 | + [1, 1, 2, 1, 1, 6], |
| 138 | + [1, 1, 1, 2, 1, 7], |
| 139 | + [1, 1, 1, 1, 2, 8], |
| 140 | + ] |
| 141 | + print(solve_simultaneous(eq)) |
| 142 | + print(solve_simultaneous([[4, 2]])) |
0 commit comments