|
| 1 | +from math import asin, atan, cos, sin, sqrt, tan, pow, radians |
| 2 | + |
| 3 | + |
| 4 | +def haversine_distance(lat1, lon1, lat2, lon2): |
| 5 | + """ |
| 6 | + Calculate great circle distance between two points in a sphere, |
| 7 | + given longitudes and latitudes. |
| 8 | + (https://en.wikipedia.org/wiki/Haversine_formula) |
| 9 | +
|
| 10 | + Args: |
| 11 | + lat1, lon1: latitude and longitude of coordinate 1 |
| 12 | + lat2, lon2: latitude and longitude of coordinate 2 |
| 13 | + returnAngle: Toggle to return distance or angle |
| 14 | + |
| 15 | + Returns: |
| 16 | + geographical distance between two points in metres |
| 17 | +
|
| 18 | + >>> int(haversine_distance(37.774856, -122.424227, 37.864742, -119.537521)) # From SF to Yosemite |
| 19 | + 254352 |
| 20 | +
|
| 21 | + """ |
| 22 | + |
| 23 | + # CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System |
| 24 | + AXIS_A = 6378137.0 |
| 25 | + AXIS_B = 6356752.314245 |
| 26 | + RADIUS = 6378137 |
| 27 | + |
| 28 | + # Equation parameters |
| 29 | + # Equation https://en.wikipedia.org/wiki/Haversine_formula#Formulation |
| 30 | + flattening = (AXIS_A - AXIS_B) / AXIS_A |
| 31 | + phi_1 = atan((1 - flattening) * tan(radians(lat1))) |
| 32 | + phi_2 = atan((1 - flattening) * tan(radians(lat2))) |
| 33 | + lambda_1 = radians(lon1) |
| 34 | + lambda_2 = radians(lon2) |
| 35 | + |
| 36 | + # Equation |
| 37 | + sin_sq_phi = pow(sin((phi_2 - phi_1) / 2), 2) |
| 38 | + sin_sq_lambda = pow(sin((lambda_2 - lambda_1) / 2), 2) |
| 39 | + h_value = sqrt(sin_sq_phi + (cos(phi_1) * cos(phi_2) * sin_sq_lambda)) |
| 40 | + |
| 41 | + distance = 2 * RADIUS * asin(h_value) |
| 42 | + |
| 43 | + return distance |
| 44 | + |
| 45 | + |
| 46 | +if __name__ == "__main__": |
| 47 | + import doctest |
| 48 | + |
| 49 | + doctest.testmod() |
0 commit comments