@@ -164,7 +164,7 @@ def magnitude(self, vector: np.ndarray) -> float:
164
164
)
165
165
raise e
166
166
167
- def cosine_similarity (self , vector1 : np .ndarray , vector2 : np .ndarray ) -> float :
167
+ def cosine_text_similarity (self , vector1 : np .ndarray , vector2 : np .ndarray ) -> float :
168
168
"""
169
169
Computes the cosine similarity between two vectors.
170
170
@@ -179,7 +179,7 @@ def cosine_similarity(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
179
179
>>> cs = CosineSimilarity()
180
180
>>> v1 = np.array([1, 2, 3])
181
181
>>> v2 = np.array([1, 2, 3])
182
- >>> cs.cosine_similarity (v1, v2)
182
+ >>> cs.cosine_text_similarity (v1, v2)
183
183
1.0
184
184
"""
185
185
try :
@@ -194,7 +194,7 @@ def cosine_similarity(self, vector1: np.ndarray, vector2: np.ndarray) -> float:
194
194
)
195
195
raise e
196
196
197
- def cosine_similarity_percentage (self , text1 : str , text2 : str ) -> float :
197
+ def cosine_text_similarity_percentage (self , text1 : str , text2 : str ) -> float :
198
198
"""
199
199
Computes the cosine similarity percentage between two texts.
200
200
@@ -209,7 +209,7 @@ def cosine_similarity_percentage(self, text1: str, text2: str) -> float:
209
209
>>> cs = CosineSimilarity()
210
210
>>> text1 = "The biggest Infrastructure in the World is Burj Khalifa"
211
211
>>> text2 = "The name of the tallest Tower in the world is Burj Khalifa"
212
- >>> cs.cosine_similarity_percentage (text1, text2) > 0
212
+ >>> cs.cosine_text_similarity_percentage (text1, text2) > 0
213
213
True
214
214
"""
215
215
try :
@@ -222,7 +222,7 @@ def cosine_similarity_percentage(self, text1: str, text2: str) -> float:
222
222
mean_vec1 = self .mean_vector (vectors1 )
223
223
mean_vec2 = self .mean_vector (vectors2 )
224
224
225
- similarity = self .cosine_similarity (mean_vec1 , mean_vec2 )
225
+ similarity = self .cosine_text_similarity (mean_vec1 , mean_vec2 )
226
226
return similarity * 100
227
227
except Exception as e :
228
228
logging .error (
0 commit comments